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Nanoporous graphene-based thin-film 
microelectrodes for in vivo high-resolution 
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One of the critical factors determining the performance of neural interfaces 
is the electrode material used to establish electrical communication with 
the neural tissue, which needs to meet strict electrical, electrochemical, 
mechanical, biological and microfabrication compatibility requirements. 
This work presents a nanoporous graphene-based thin-film technology 
and its engineering to form flexible neural interfaces. The developed 
technology allows the fabrication of small microelectrodes (25 µm 
diameter) while achieving low impedance (∼25 kΩ) and high charge 
injection (3–5 mC cm−2). In vivo brain recording performance assessed in 
rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for 
local field potentials), while stimulation performance assessed with an 
intrafascicular implant demonstrates low current thresholds (<100 µA) 
and high selectivity (>0.8) for activating subsets of axons within the rat 
sciatic nerve innervating tibialis anterior and plantar interosseous muscles. 
Furthermore, the tissue biocompatibility of the devices was validated by 
chronic epicortical (12 week) and intraneural (8 week) implantation. This 
work describes a graphene-based thin-film microelectrode technology and 
demonstrates its potential for high-precision and high-resolution neural 
interfacing.

Neural interface medical devices offer therapeutic options to patients 
suffering from certain neurological disorders and neural impairments 
(for example, Parkinson’s disease1, deafness2 or amputations3)4,5. To 
broaden the range of clinical uses of neural interfaces, improvements 

in efficacy are needed so that the treatment benefit outweighs the asso-
ciated risks6–9. Current clinical technology mostly consists of devices 
that either electrically record or stimulate the nervous system using 
millimetre-scale metallic electrodes. To improve the interface with the 
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direct contact with biological tissue. A surface with a root mean square 
(r.m.s.) roughness of about 50 nm was determined by atomic force 
microscopy (AFM) measurements (Fig. 1e). Raman spectrograms reveal 
a higher defect content (ID/IG ratio) in EGNITE compared with untreated 
GO (Fig. 1f).This can be explained by the effect of the hydrothermal 
reduction, which is assumed to pull out part of the basal plane, thus 
creating holes in the reduced GO flakes that we believe are at the origin 
of the highly enlarged electrochemical surface area of the material33.

The outer chemical composition of EGNITE was studied by X-ray 
photoelectron spectroscopy (XPS; Fig. 1g,h and Supplementary Fig. 2),  
which confirms the reduction process during the hydrothermal treat-
ment, increasing the C/O ratio in the GO film from 2.4 to 3.8 (ref. 34). 
Electron energy-loss spectroscopy (EELS) was used to assess the chemi-
cal composition deep inside the material, revealing carbon and oxygen 
relative atomic contents of 85% and 15%, respectively (Supplementary 
Fig. 3). Moreover, the hydrothermal reduction process led to a decrease 
in the graphene-based film resistivity (Fig. 1i)35.

To exploit EGNITE for neural interfacing, we developed a wafer-scale 
fabrication process to integrate arrays of EGNITE microelectrodes into 
flexible devices (Fig. 2a and Methods). Polyimide (PI) is used as substrate 
and insulation layer36,37, and gold is used for the tracks. The procedure, 
described in Supplementary Fig. 4, results in high-yield flexible arrays 
of EGNITE electrodes of ~12 µm thickness. Figure 2b shows two designs, 
a 64-channel microelectrocorticography (µECoG) array organized in an 
8 × 8 grid with a pitch of 300 µm and a transverse intrafascicular multi-
channel electrode (TIME) device with two linear arrays of nine microelec-
trodes each separated by 135 µm. The devices are flexible (Fig. 2c)29,36,  
and contain 25-µm-diameter EGNITE microelectrodes (Fig. 2d).

In vitro electrode performance
The electrochemical performance of the 25-µm-diameter EGNITE 
microelectrodes was assessed in phosphate-buffered saline (PBS) 
solution (Methods). Cyclic voltammetry (CV) was used to assess the 
electrochemical window of the EGNITE material which was deter-
mined to be between −0.9 and +0.8 V (versus Ag/AgCl) (Fig. 2e). We 
also characterized the electrodes using electrochemical impedance 
spectroscopy (EIS) (Fig. 2f and Supplementary Fig. 7). The interfacial 
capacitance was estimated to be 13.9 mF cm−2, which corresponds to 
an ∼104-fold increase with respect to the typical value of single-layer 
graphene (2 µF cm−2)38,39. At 1 kHz, the EGNITE microelectrodes exhib-
ited an impedance of 25.2 ± 0.7 kΩ (n = 18).

The performance of EGNITE microelectrodes under current injec-
tion has also been studied. Figure 2g shows the electrode polariza-
tion that a 25-µm-diameter EGNITE microelectrode experiences upon 
the injection of cathodic-first rectangular, biphasic current pulses  
(1 ms per phase) at charge densities of 2.04 and 4.08 mC cm−2. We then 
determined the CIL of EGNITE electrodes under different pulse dura-
tions. Figure 2h shows a map of the microelectrode voltage polarization 
in response to biphasic current pulses of between 0.1 ms and 1 ms, for 
injected charge densities up to 5 mC cm−2.

The stability of the electrodes was investigated during continuous 
electrical stimulation. EGNITE microelectrodes were stimulated at a 
clinically relevant frequency (100 Hz) and observed to be stable after 
15 million pulses as indicated by the rather constant impedance at 1 kHz 
(Fig. 2i), with no obvious structural changes observed (Supplemen-
tary Fig. 8). We also investigated the mechanical stability of EGNITE 
electrodes by sonication of the devices immersed in an ultrasound 
water bath16. After consecutive sonication for 15 min at 200 W and 
300 W, the EGNITE electrodes remained attached to the device (Fig. 2j  
and Supplementary Fig. 9). No delamination or cracking of the elec-
trodes was observed. To further evaluate device functionality under 
mechanical stress, a bending test around a rod of 0.7 mm diameter was 
performed. Over 98 ± 3% of the electrodes remained functional after 
ten bending cycles, and of those, all sustained ten additional bend-
ing cycles. Minor changes were observed in the impedance (Fig. 2k  

nervous system, multiple lines of research suggest that the electrode 
dimensions should be miniaturized to the micrometre-scale3,5,9–11, allow-
ing neural recordings to be captured at a higher spatial resolution, 
potentially resulting in improved neural signal decoding8,12,13. Addi-
tionally, the reduced electrode size can improve stimulation focality 
and facilitate recapitulation of the natural neural activation patterns 
of healthy nervous tissue9,14,15.

Research on novel materials and electrode coatings has attempted 
improvements in neural recording and stimulation performance16–19. 
Aside from classically used noble metals, such as gold and platinum, 
nanoengineered metals20, metal oxides16, conducting polymers21,22 
and carbon-based materials23,24, among others16, have been explored 
as alternative material options to engineer neural interfaces. Such 
research efforts are very much active today, particularly in the design 
of miniaturized, implantable neural interfaces for chronic use25,26.

Due to their unique combination of properties, graphene-related 
materials have emerged as attractive candidates for electrode fabrica-
tion in bidirectional neural interfaces10,27,28. Graphene electrodes offer 
a capacitive interaction in aqueous media over a wide potential window 
coupled with mechanical flexibility10,29. Single-layer graphene microelec-
trodes have been used for neural interfacing applications, but the limited 
electrochemical performance of this carbon monolayer constrains the 
potential for miniaturization27. To improve performance, multilayer 
porous electrodes have been explored28 but their development has 
proven to be very challenging. This is mainly due to difficulties of obtain-
ing high porosity, yet dense packing of the material layers and a high 
ion-accessible surface area with low ion transport resistance. Current 
achievements have lowered the impedance and increased the charge 
injection limit (CIL) of graphene-based electrodes30. However, to date 
only bulky porous electrodes of hundreds of micrometres of thickness 
have been demonstrated31, which limits the integration of the technol-
ogy into dense arrays for use with anatomically congruent interfaces.

We describe here a graphene-based thin-film electrode material 
(Engineered Graphene for Neural Interface (EGNITE)) and a wafer-scale 
fabrication process of flexible microelectrode arrays for high spatial reso-
lution neural recording and stimulation. EGNITE microelectrodes exhibit 
low impedance, high CIL and biologically relevant current pulse stimula-
tion stability. EGNITE performance for bidirectional neural interfacing 
has been validated in rodents. Cortical recording studies confirm the abil-
ity to record spontaneous and evoked local field potentials and multiunit 
activity (MUA). Intraneural placement within the sciatic nerve made it  
possible to explore spatially precise stimulation for selective muscle  
activation. Additionally, chronic in vivo biocompatibility studies have 
been performed to assess tissue response to the implanted devices.

Electrode material and array microfabrication
The preparation of EGNITE films is shown in Fig. 1a and further described 
in Methods. In brief, the micrometre-thick EGNITE film is obtained by 
vacuum filtration of an aqueous solution of graphene oxide (GO) flakes 
through a porous membrane, forming a free-standing GO film that 
is then transferred on top of the final substrate and hydrothermally 
reduced.

The structure of the EGNITE film consists of horizontally stacked 
flakes as revealed by scanning electron microscopy (SEM) (Fig. 1b). 
Following the hydrothermal reduction process, the stacking distance 
decreases from 8.1 ± 0.8 Å to 3.9 ± 0.6 Å, as assessed by X-ray diffraction 
(Fig. 1c). The stacking distance reduction is attributed to the removal of 
oxygen groups from the basal plane of the flakes32. The nanostructured 
cross section of EGNITE was further investigated by high-resolution 
transmission electron microscopy (HRTEM) (Fig. 1d). HRTEM data 
confirmed the stacked configuration of the flakes and the presence 
of nanometre-scale pores that form capillaries between flake planes, 
extending across the bulk of the material (Supplementary Fig. 1).

Understanding the topography and chemical composition of the 
outer surface is of particular importance due to its intended use in 
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and Supplementary Fig. 10), indicating the mechanical stability of the 
EGNITE microelectrodes.

In vivo brain signal recording
The suitability of the EGNITE microelectrodes for measuring neural sig-
nals was assessed by using flexible µECoG devices (Fig. 2b,c) to monitor 
cortical activity in anaesthetized rats (Fig. 3a). The probe was epicorti-
cally positioned over the left auditory cortex (primary auditory cortex 
and anterior auditory field regions) (Fig. 3b). Figure 3c (and Supple-
mentary Fig. 11) shows the 10 Hz high-pass-filtered (HPF) signal from 
each of the 64 EGNITE electrodes in the array over a 350 ms window in 
which a pure tone was presented. Negative and positive evoked local 
field potentials (eLFPs) can be observed after the onset and offset of 
the sound stimulus40.

Figure 3d shows the same signals from two exemplary regions HPF 
at 200 Hz, together with the r.m.s. value. The high-frequency MUA and 
the corresponding increase of the r.m.s. amplitude due to MUA correlate 
well with the eLFP, indicating a synchronous behaviour of the neurons to 
the stimulus. Figure 3e shows the average response to sound stimuli at 
different frequencies for the LFP HPF signal at 10 Hz (grey lines) and the 
averaged r.m.s. value of the signals above 200 Hz (r.m.s. MUA, blue lines). 

Stimuli at 2 or 4 kHz elicited smaller responses, both in LFP and MUA,  
than stimuli above 6 kHz, as expected from the sound sensitivity of 
rats41–43.

The intrinsic r.m.s. noise of the electrode (calculated from 
post-mortem recordings) was 2.5 µV, very close to the limit of the 
electronic set-up8,44. Fig. 3f shows the signal-to-noise ratio (SNR) of 
the in vivo to post-mortem power spectral density (PSD) signals. The 
SNR reaches 40 dB at 10 Hz and 5 dB at 1 kHz (Fig. 3f), demonstrating 
high-fidelity recordings at both low and high frequencies45, outper-
forming the SNR obtained with a commercial platinum µECoG array 
(Supplementary Fig. 12).

Additionally, a proof-of-concept chronic recording experiment 
(Methods) was performed using an EGNITE intracortical device 
implanted in the prefrontal cortex in a mouse for over 90 days  
(Fig. 3g–j). After the first month, auditory evoked potentials (AEPs) 
were recorded longitudinally over the 3 months of implantation while 
the animal was freely moving. The observed AEP peak at 40 ms post 
stimulus was detected with mean SNR above 30 dB at all timepoints 
(Fig. 3h,i). Single-unit action potentials could be detected by the 
chronically implanted EGNITE electrodes at 1 month postimplantation  
(Fig. 3j).

b ed

f g h

c

i

4 nm0 10 20 30 40 50

3.7 Å

EGNITE

GO
In

te
ns

ity
 (a

.u
.)

2θ (deg)

7.8 Å 

2,0001,000

Raman shift (cm–1)

GO

EGNITE
ID/G = 1.14

ID/G = 0.87

3,000

In
te

ns
ity

 (a
.u

.)

1.4 1.2 1 0.8 0.6 0.4 0.2 0

C1s

BE (keV)

O1s
EGNITE

GO

In
te

ns
ity

 (a
.u

.)

GO

EGNITE

294 290 286 282 278

C–C/C=O
C–O/C–O–C
C=O
O=C–O

Measured
Fitted data

In
te

ns
ity

 (a
.u

.)

1 µm

BE (eV)

Roughness (nm
)

5 µm

a

150

100

50

–50

–150

–100

0

–0.2

–200

–100

100

200

0

0.20

Potential (V)

j (
A 

m
–1

) GO 67 k�·cm

EGNITE 0.2 �·cm

Graphene flake

1. GO flakes 2. Filtration 3. Transfer 4. Hydrothermal reduction

COOH, OH and O groups
H2O

Fig. 1 | Preparation of nanoporous reduced GO thin films. a, Preparation of 
the porous reduced GO thin-film EGNITE. This consists of filtering a GO solution 
through a porous membrane (1, 2), transferring the deposited film of stacked 
GO flakes onto a conductive substrate (3) and the hydrothermal reduction of 
the ensemble, which turns the film highly porous and conductive (4). b, SEM 
micrograph of a cross section of the material. c, X-ray diffraction of GO and 
EGNITE, revealing the characteristic peaks corresponding to the parallel stacking 
of the GO and reduced GO flakes. d, HRTEM false-colour cross-sectional view of 

EGNITE. Inset: corresponding power spectrum showing two symmetric diffuse 
spots, indicating the preferred stacking direction in the material and slight 
fluctuation of the flakes’ interplanar distance. Scale bar, 0.1 nm. e, AFM image 
revealing roughness of the upper surface of the EGNITE film. f, Raman spectra 
of the GO and EGNITE. The ratio between D and G peaks increases after the 
hydrothermal treatment. g, XPS full spectrum. BE, binding energy. h, C1s peak of 
(top) GO and (bottom) EGNITE. The decrease of the oxygen signal indicates the 
reduction of the GO film. i, Conductivity of the GO and EGNITE films.

http://www.nature.com/naturenanotechnology


Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01570-5

0.1 0.2 0.5 1 2

Phase width (ms)

5

4

3

2

1In
je

ct
ed

 c
ha

rg
e 

(m
C

 c
m

–2
)

−1.5

−1.0

−0.5

0 Transient voltage drop (V)

0 5 10 15

Millions of pulses

103

104

105

106

Z 
(Ω

)

−0.9 −0.6 −0.3 0 0.3 0.6 0.9

UWE versus Uref (V)

−30

−20

−10

0

10

20

C
ur

re
nt

 (n
A)

100 mV s–1

0 2 4 6

Time (ms)

−1.0

−0.5

0

0.5

Current shape

2 mC cm–2

4 mC cm–4

100 101 102 103 104 105

Frequency (Hz)

104

105

106

|Z
| (

Ω
)

20

40

60

80
–Phase (deg)

Before

PI

EGNITE

Gold

PI

Neural recording
device

Neural stimulation
device

b c d

h

gf

1 ms per phase
3 mC cm–2

Z@1kHz

After

a

e

ji

k

100 101 102 103 104

Frequency (Hz)

104

105

106

|Z
| (

Ω
)

No. of bend cycles
0

10

20

Dev1 Dev2 Dev3

Dev

103

104

105

|Z
| @

 1 
kH

z 
(Ω

)

No. of bend cycles 0 10 20

U
W

E v
er

su
s 
U

re
f (

V)

25 µm

25 µm

700 µm diam.

131°
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impedance versus frequency. n = 18 electrodes. g, Voltage response to current-
controlled biphasic pulses of 1 ms per phase (dashed lined) applied through 
EGNITE electrodes, corresponding to charge injection values of 2 and 4 mC cm−2. 
h, Map of the cathodic capacitive voltage excursion occurring at the interface 
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current pulses at different levels of injected charge and pulse widths. i, Evolution 
of impedance at 1 kHz throughout continuous stimulation with 15 µA (3 mC cm−2) 
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In vivo stimulation of nerve fibres
The stimulation capability of the EGNITE microelectrodes was inves-
tigated using an array of transverse intrafascicular multichannel 
electrode (TIME)46 devices implanted in the sciatic nerve of anaes-
thetized rats (Fig. 4a). The device consisted of two linear arrays  
(A and B) of nine electrodes (diameter, 25 µm) along a 1.2 mm stripe. 
Each linear array faced opposite sides of the stripe. Once implanted 
(Fig. 4b), the device crossed the peroneal fascicle (responsible for 
the innervation of the tibialis anterior (TA) muscle) and the tibial 
fascicle (responsible for the innervation of both the gastrocnemius 
(GM) and plantar interosseous (PL) muscles). Each electrode in the 
EGNITE array was individually stimulated and the elicited compound 
muscle action potentials (CMAPs) of TA, GM and PL muscles were 

simultaneously recorded by monopolar needles in the muscles46  
(Fig. 4c).

To stimulate the nerve, trains of 100 biphasic pulses (100 µs per 
phase) with increasing current amplitude (0 to 100 µA, in 1 µA steps) 
were used. Figure 4d shows the response of TA, GM and PL muscles to 
the current pulses applied through the microelectrodes A1–A9. Cur-
rents as low as 15–20 µA elicited CMAPs that increased in amplitude 
until a maximum activation was reached. The recruitment curves 
reflect the typical sigmoidal shape (Fig. 4e)46,47. The pattern of mus-
cular activation changed depending on the stimulating electrode. 
The activity could be split in two clusters: one (A1–A5) in which the 
TA muscle was activated at lower stimulus intensity than the GM and 
the PL muscles, and another (A7–A9) in which the GM and PL muscles 
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waveform (inset) of an individual neuron for 100 tone stimuli.
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exhibited more activity than the TA muscle. This suggests that the first 
five microelectrodes were placed in the peroneal fascicle, whereas the 
last three were located within the tibial fascicle. From these responses, 
critical parameters for implants aiming at restoring mobility, such as 
the current thresholds and selectivity index of the evoked muscular 
activity, can be derived3.

Using 30% of muscle activation (the minimum stipulated to over-
come gravity46) as a benchmark, the current stimulation at which this 
occurred for each muscle was determined for the TA, GM and PL mus-
cles as marked in Fig. 4e. From these data, a selectivity index (SI30%) of 
>0.85 was calculated for the TA, 0.77 for the GM, while for the PL it was 

only 0.44. As an indicator, a maximal selectivity index of 1 indicates 
that one muscle can be solely activated without any activation in the 
other recorded muscles3,9.

A more detailed study of the activation threshold and selectivity 
was performed with TIME devices acutely implanted in rats. Figure 4f 
shows the mean values for the minimum current needed to achieve 
a 5% and a 95% of the maximal CMAP amplitude in the TA, GM and PL 
muscles. Less than 50 µA and 100 µA were required to reach 5% and 
95% of maximal muscle activation, respectively. Compared to previ-
ous studies in which TIME devices with 80-µm-diameter electrodes 
of iridium oxide were used48, the 25-µm-diameter EGNITE electrodes 

a

A

B

C

C

A

B

C

Max:
–100 µA

Max:
+100 µA

Femur

Rat

3. The stimulus triggers a response in 
the muscles of the leg and the foot. Their 
depolarizations are electrically recorded.

1. Individual microelectrodes
 inject biphasic pulses 
of 100 µs per phase

2. Electrical stimulation 
of three regions of the 
sciatic nerve (A, B, C) 
responsible for the 
innervation of di�erent 
muscles

TIME:
Transverse intrafascicular
multichannel electrode

Peroneal
Fascicles:

Tibial

Sural

Sciatic
nerve

GM

PL

TA

Stimulus

A

B

C

100

A9

A8

A7

A6

A5

A4

A3

A2

A1

TA GM PL

Stimulus

0
100

0
100

0

400

300

200

100

0 0

0.2

0.4

0.6

0.8

1.0

5% 95
% 5% 95
% 5% 95
%

0

%
 m

ax
im

al
 m

us
cu

la
r

re
sp

on
se

20 40 60 80

EGNITE IrOx

Injected current (µA)

20
0 

µA
40

 m
V

40
 m

V
4 

m
V

Activation threshold

100

d

e

b c f g

0 20

TA

TA

TA

Stimulus
2 ms

GM

GM

GM

PL

PL

PL

30%
A5

A5

A5A6

A6

A6 A7

A7

A7

30%

30%

0 20 0 20

Time (s)

TA

Se
le

ct
iv

ity
 in

de
x

In
je

ct
ed

 c
ur

re
nt

 (µ
A)

G
M PL

1 mm

** *

Fig. 4 | In vivo neural stimulation of peripheral nerve. a, Schematic diagram of 
the acute stimulation experiments. A TIME array is implanted in the sciatic nerve 
of the rat crossing the peroneal and the tibial fascicles. The axons innervating 
the TA muscle are in the peroneal fascicle, whereas the axons innervating the 
GM and PL muscles are located in the tibial fascicle. Biphasic pulses of 100 µs 
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micrograph of the implanted TIME device in the sciatic nerve. c, CMAPs recorded 
from TA, GM and PL muscles in response to increasing levels of injected current 

pulses applied to one of the electrodes. d, Recorded CMAPs in TA, GM and PL 
muscles in response to trains of biphasic current pulses of increasing amplitude 
applied to nine microelectrodes of the array (A1–A9). e, Normalized CMAP of 
TA, GM and PL muscles in response to pulses injected to microelectrodes A5–A7 
from the implanted TIME. f, Comparative plot of the injected current needed 
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(cyan, n = 4) and of iridium oxide (grey, n = 6)48. *P = 0.039, **P = 0.0032 (two-way 
ANOVA followed by Bonferroni post hoc test for differences between groups). 
g, Comparative plot of the selectivity index at the minimal functionally relevant 
muscular stimulation for the same data as in f48. In f,g, data are mean ± s.e.m.
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elicited a response with current thresholds substantially lower  
(Fig. 4f).

Regarding the selectivity indices, high selectivity values close 
to 0.9 were obtained for TA and PL while selectivity for GM was lower 
(<0.6) (Fig. 4g)48,49. The higher selectivity obtained for the TA muscle 
can be explained by the separation of the fascicles by the perinerium 
as TA is innervated by axons in the peroneal fascicle while PL and GM 
are innervated by axons in the tibialis fascicle. Similarly, lower selectiv-
ity indices for GM (versus PL) can be explained due to the difficulties 
associated with obtaining intrafascicular selectivity, as both muscles 
are innervated by axons in the tibial fascicle, thus closer and without 
a perineurial barrier49.

Biocompatibility of EGNITE microelectrodes
Chronic biocompatibility of the EGNITE-based devices was investigated 
in vivo both in the central and in the peripheral nervous system.

Cortical biocompatibility
Chronic biocompatibility was studied with flexible epicortical devices 
implanted on adult rats for up to 12 weeks before histological and immu-
nohistochemical evaluation of microglia phenotype morphology or 
extraction of cortical brain tissue for cytokine expression (by enzyme- 
linked immunosorbent assay (ELISA)). Control devices consisting of 
exposed gold electrodes and PI substrate, and gold passivation layers 
and PI-only devices were used to compare with the EGNITE devices at 
three time points postimplantation (2, 6 and 12 weeks; n = 3 per group). 
Moreover, cytokines released in the implanted and contralateral  
(no implantation) hemispheres were compared.

Immunohistochemical analysis by Iba-1 (microglia marker) was 
performed to assess the level of microglial cell activation in the region 
directly in contact with the implanted devices (Fig. 5a and Supple-
mentary Fig. 13). These results indicated no significant differences in 
the levels of microglia activation, regardless of electrode material or 
time point (Fig. 5b). Moreover, no histopathological sign of fibrotic 
tissue formation was observed in the area of the cortex in direct con-
tact with the devices (Supplementary Fig. 14). No significant changes 
in the levels of inflammatory cytokines (including those involved in 
astrocytosis) from the cortical tissue samples at each time point (or 
between the different device types) were found (Fig. 5c–e and Sup-
plementary Fig. 15). A minor increase in interleukin (IL)-1b, IL-6 and 
monocyte chemoattractant protein-1 (MCP-1) can be seen in the 2 
and 6 week EGNITE-implanted groups compared to the groups with 
control devices (gold or PI). This difference is not seen at the 12 week 
time point (Fig. 5c and Supplementary Fig. 15). When compared to 
the contralateral hemisphere at each time point, no appreciable dif-
ferences could be seen for any of the cytokines quantified, with the 
exception of the anti-inflammatory marker IL-18 (Fig. 5d) which was 
significantly increased at 2 weeks following implantation with EGNITE 
compared with the contralateral hemisphere. However, by 12 weeks 
this reaction also abated to background levels.

Peripheral nerve biocompatibility
An intraneural device was designed in which the area of EGNITE in 
contact with the nerve was increased by a factor of 20, with the aim of 
maximizing the contact area to investigate immune responses. Intra-
neural implants, with EGNITE and control devices (PI-only devices), 
were longitudinally implanted in the tibial branch of the sciatic nerve of 
rats (Fig. 5f,g)50. Electrophysiological, pain and locomotion functional 
studies, and immunohistochemical labelling of the nerve, conducted 
at 2 and 8 weeks postimplantation and compared to the contralateral 
nerve or paw did not show any significant difference (Methods and Sup-
plementary Fig. 16), indicating that there was no damage to myelinated 
motor nerve fibres by any of the implants, no damage of small nerve 
fibres or irritation induced by nerve compression or axonal injury and 
no functional nerve damage by the intraneural implants.

One of the main events during the foreign body reaction (FBR) is 
the infiltration by haematogenous macrophages into the implanted 
site, as part of the inflammatory phase51. Comparison between implants 
with and without EGNITE revealed no differences in the amount of mac-
rophages in the nerve (Fig. 5h,j,k). The last phase of the FBR and one the 
main obstacles for long-term functionality of intraneural electrodes 
is the formation of a fibrous capsule around the implant. We analysed 
the fibrous capsule formation around the implant at different time 
points. Figure 5h shows that the capsule thickness formed around the 
PI strips was similar for implants with and without EGNITE at both 2 and 
8 weeks, indicating that EGNITE does not induce damage to the nerve 
or further fibrotic scar formation. The time course of macrophage 
infiltration and capsule thickness showed a peak at 2 weeks and slight 
reduction at 8 weeks, as previously reported50. Immunohistochemical 
images (Fig. 5j–m) show numerous axons near the interneural implants 
(at around 20 µm) without and with EGNITE, indicating limited dam-
age and remodelling after implant, consistent with previous works50.

Conclusions
The EGNITE technology described here offers an attractive combi-
nation of properties that fulfil the requirements for next-generation 
neural interfaces. Its highly porous structure results in a high 
surface-to-volume ratio, resulting in a capacitance per geometric sur-
face area of >10 mF cm−2, an ∼104 increase compared with non-porous 
graphene electrodes. We have demonstrated that the EGNITE material 
can be miniaturized to the micrometre scale and integrated into micro-
fabricated flexible arrays while preserving material properties. The 
developed microelectrode arrays exhibit high yield (>95%) and homoge-
neity and can deliver stimulation at high charge density (3–5 mC cm−2) 
over millions of pulses.

Surface and depth brain recordings demonstrate that, despite 
their reduced size (25 µm), the EGNITE microelectrodes exhibit low 
intrinsic noise levels, in the range of the instrumentation limits. EGNITE 
microelectrodes can record neural signals with high fidelity and high 
spatial resolution, exhibiting high SNR (>10 dB) for local field potential 
recordings. MUA and single-unit activity (SUA) was also recorded with 
high SNR, and a proof-of-concept chronic intracortical experiment 
showed LFP, MUA and SUA recordings over 1 month. Acute in vivo 
stimulation studies in the rat sciatic nerve were conducted to assess 
the stimulation capabilities of the technology. The small diameter 
and high density of EGNITE electrodes permitted focal stimulation 
with high selectivity and low charge stimulation thresholds (<100 µA) 
required for muscle activation.

Additionally, long-term biocompatibility and tissue functionality 
assessments conducted in the cortex and peripheral nerves suggest 
that the EGNITE technology is well tolerated, with minimal local or 
systemic tissue responses. This allows further development of the 
EGNITE microelectrode technology in applications that would require 
chronic implantation, including the determination of the degree of 
fibrotic capsule formation on chronic functional use of the devices.

The evaluation of chronic functionality and stability of EGNITE 
electrodes in a neuromodulation therapeutic setting25 will require 
further investigation. Considering graphene’s chemical stability and 
wide electrochemical potential window, we expect improvements over 
alternative polymeric and metal-based electrode materials. Future 
research could focus on further improvement of its electrochemical 
performance. Long-term stability aspects related to the microfabrica-
tion process should also be explored, such as eliminating the metal 
back-contacts to prevent long-term corrosion processes52.

The high SNR obtained with EGNITE microelectrodes allows for 
high-fidelity brain mapping, therefore potentially improving brain 
signal decoding53 and facilitating the discovery of new neural biomark-
ers54. Moreover, the low charge stimulation threshold observed with the 
intraneural microelectrodes can be particularly suited for providing 
sensory feedback in applications in which precise control of motor 
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Fig. 5 | Biocompatibility of EGNITE technology in brain and sciatic nerve. 
Cortical tissue response. a, Left: representative brain section, postimplantation 
(left hemisphere) immunohistochemically stained for Iba-1. White arrow 
indicates the area of interest that was set at 3,000 µm from midline, based on 
average centre of device implantation. Red box: 8× magnification area used for 
microglial phenotype morphological analysis. Yellow box: 20× magnification 
area used to take representative images for the Iba-1 analysis in Supplementary 
Fig. 14. Right: EGNITE device implant location shown by the red line on coronal 
and sagittal rat brain sections. b, Iba-1 signal based on image processing of 
immunohistochemical sections. c–e, ELISA-based quantification of anti-
inflammatory and proinflammatory cytokine levels (IL-1b (c), IL-18 (d), IL-33 
(e)) normalized to total protein content (mg ml−1) of the tissue samples in direct 
contact with the EGNITE microelectrodes for 2, 6 and 12 weeks following their 
epicortical implantation. n = 3 for each device material. Peripheral nerve tissue 
response. f, Schematic of the intraneural biocompatibility experiment. A PI 
device with and without EGNITE is implanted in the tibial branch of the sciatic 

nerve of rats. g, Optical micrograph of the longitudinally implanted device in 
the rat sciatic nerve. Scale bar, 1 mm. The arrow indicates the insertion point, 
and the dashed lines indicate the placement of the intraneural device within the 
tibial fascicle. h, Number of inflammatory Iba-1-positive cells in the tibial nerve 
after 2 and 8 weeks of longitudinal implantation. i, Tissue capsule thickness 
formed around the implanted device. Boxplots, n = 7 for each device material. 
j–m, Representative images of transverse sections of a tibial nerve at 8 weeks 
after implantation of biocompatibility devices, made of PI alone (j,l) or PI with 
EGNITE (k,m), stained for inflammatory cells (antibody against Iba-1, j,k) and for 
axons (antibody against neurofilament 200, l,m). The arrowhead points to the 
transverse sections of the PI strips that were longitudinally inserted in the nerve. 
The arrows point to a site with EGNITE in the PI strip in m. The tissue capsule is 
delineated as dotted lines in l and m. Scale bar, 50 µm. The number of samples for 
the histological analyses was n = 6–7 per condition and time postimplantation. 
In boxplots, the median, quartile box and minimum and maximum values 
(excluding outliers) are presented.
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prostheses is needed4 or for high-resolution deep-brain stimulators 
or retinal neuroprostheses14,15,55,56. In addition, low charge stimulation 
thresholds can eventually lead to lower power consumption of chroni-
cally implanted stimulators, hence extending battery lifetimes and 
facilitating wireless powering.

The graphene-based technology presented here, integrated into 
microfabrication processes reproducibly and with the capacity to be 
upscaled, will be critical to achieve clinical translation and comply with 
the stringent regulatory requirements for invasive clinical applica-
tions. The combination of high-performance electrical stimulation and 
neural recording capabilities, coupled with chronic tissue tolerance, 
indicates that the thin-film EGNITE microelectrode technology can 
contribute to the next generation of bidirectional neural interfaces.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41565-023-01570-5.
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Methods
Material preparation and characterization
Aqueous GO solution was diluted in deionized water to obtain a 
0.15 mg ml−1 solution and vacuum filtered through a nitrocellulose 
membrane with pores of 0.025 µm, forming a thin film of GO. The thin 
film was then transferred to the target substrate using wet transfer in 
deionized water and further thermal annealing at 100 °C for 2 min. 
The GO film–substrate stack was hydrothermally reduced at 134 °C in 
a standard autoclave for 3 h to form EGNITE. The base substrate for all 
characterization studies of EGNITE was a square (1 × 1 cm2) of Si/SiO2 
(400 µm/1 µm).

XPS. XPS measurements were performed with a Phoibos 150 analyser 
(SPECS) in ultra-high-vacuum conditions (base pressure, 5 × 10−10 mbar) 
with a monochromatic Al Kα X-ray source (1,486.74 eV). Overview 
spectra were acquired with a pass energy of 50 eV and step size of 1 eV 
and high-resolution spectra were acquired with pass energy of 20 eV 
and step size of 0.05 eV. The overall resolution in those last conditions 
is 0.58 eV, as determined by measuring the full width at half maximum 
of the Ag 3d5/2 peak of sputtered silver. The XPS analysis shows a strong 
decrease after the hydrothermal treatment of the C–O peak (associated 
with epoxide groups), but a small contribution of C–OH, C=O and C(O)
OH due to hydroxyls, carbonyls and carboxyls that remain after reduc-
tion. The deconvolution of the O1s peak confirms such behaviour. The 
main contribution to the C1s signal after the hydrothermal reduction, 
however, comes from sp2 hybridized C–C orbitals34,57.

X-ray diffraction. X-ray diffraction measurements (θ–2θ scan) were 
performed in a Materials Research Diffractometer (Malvern PANalyti-
cal). This diffractometer has a horizontal ω–2θ goniometer (320 mm 
radius) in a four-circle geometry and worked with a ceramic X-ray tube 
with Cu Kα anode (λ = 1.540598 Å). The detector used is a Pixcel which 
is a fast X-ray detector based on Medipix2 technology.

Raman spectroscopy. Raman spectroscopy measurements were 
performed using a Witec spectrograph equipped with a 488 nm laser 
excitation line. For the measurements, Raman spectra were acquired 
using a 50× objective and a 600 grooves per nm grating; laser power 
was kept below 1.5 mW to avoid sample heating.

TEM. A focused ion beam lamella was prepared with a Helios NanoLab 
DualBeam (LMA-INA) for the cross-section study of the EGNITE sample. 
Structural analyses were performed by means of TEM using a Tecnai 
F20 microscope operated at 200 kV, including HRTEM and high-angle 
annular dark-field STEM techniques. The STEM-EELS experiment was 
performed in a Tecnai F20 microscope working at 200 KeV, with 5 mm 
aperture, 30 mm camera length, a convergence angle of 12.7 mrad 
and a collection angle of 87.6 mrad. As we used 0.5 eV per pixel and 
250 eV as the starting energy in the core-loss acquisition, we did not 
acquire the Si K-edge expected at 1,839 eV, the Pt M-edge at 2,122 eV 
and the Au M-edge at 2,206 eV. The relative C–O atomic composition 
has been obtained by focusing our attention in the reduced GO layer 
and assuming that the edges analysed (C and O in our case) sum to 
100%. This assumption is valid in our case as evidenced in the Supple-
mentary Information maps. The energy differential cross section was 
computed using the Hartree–Slater model and the background using 
a power-low model.

Electrical conductivity. Electrical conductivity measurements were 
performed using a Keithley 2400 sourcemeter in two-point configura-
tion. The samples measured consisted of EGNITE films of 1 × 1 cm2 on 
top of a SiO2 substrate.

Data analysis. X-ray diffraction, Raman and XPS data were analysed 
using Python 3.7 packages (Numpy, Pandas, Scipy, Xrdtools, Lmfit, 

Rampy, Peakutils, Matplotlib). The distance between planes was cal-
culated from the X-ray diffraction measurements according to Snell’s 
law. Once the data were moved into the spatial domain, the maximum 
of the peaks was fitted. The corresponding distance gave a mean value 
of the distance between planes. Deviations from those mean values 
were calculated from the full width at half maximum of the Lorentzian 
fittings of the peaks on the spatial domain. XPS and Raman spectros-
copy measurements were analysed by fitting a convolution of peaks on 
expected locations for the corresponding features. The conductivity 
values of the GO and EGNITE were obtained by fitting the I–V curves 
measured in the electrical conductivity measurements to Ohm’s law. 
Data are n = 1 for each measurement.

Flexible array fabrication
The fabrication of the devices is shown in Supplementary Fig. 4. 
Devices were fabricated on 4 inch Si/SiO2 (400 µm/1 µm) wafers. First, 
a 10-µm-thick layer of PI (PI-2611, HD MicroSystems) was spin coated 
on the wafer and baked in an atmosphere rich in nitrogen at 350 °C for 
30 min. Metallic traces were patterned using optical lithography of the 
image reversal photoresist (AZ5214, Microchemicals). Electron-beam 
evaporation was used to deposit 20 nm of titanium and 200 of gold and 
lift-off was performed. We used an EGNITE film of around 1 µm thick-
ness as a trade-off between electrochemical performance and array 
flexibility. After transferring the GO film, aluminium was e-beam evapo-
rated and areas on top of the future microelectrodes were defined by 
using a negative photoresist (nLOF 2070, Microchemicals) and lift 
off. Next, the GO film was etched everywhere apart from the future 
microelectrodes using an oxygen reactive ion etching (RIE) for 5 min 
at 500 W and the protecting aluminium columns were etched with a 
diluted solution of phosphoric and nitric acids. Then, a 3-µm-thick 
layer of PI-2611 was deposited onto the wafer and baked as previously 
described. PI-2611 openings on the microelectrode were then defined 
using a positive thick photoresist (AZ9260, Microchemicals) that 
acted as a mask for a subsequent oxygen RIE. Later, the devices were 
patterned on the PI layer, again using AZ9260 photoresist and RIE. 
The photoresist layer was then removed in acetone and the wafer 
cleaned in isopropyl alcohol and dried out. Finally, the devices were 
peeled off from the wafer and were ready to be placed in sterilization 
pouches to be hydrothermally treated at 134 °C in a standard autoclave  
for 3 h.

Microelectrode electrochemical characterization
Electrochemical characterization of the microelectrodes was per-
formed with a Metrohm Autolab PGSTAT128N potentiostat in 1× PBS 
(Sigma-Aldrich, P4417) containing 10 mM phosphate buffer, 137 mM 
NaCl and 2.7 mM KCl at pH 7.4 and using a three-electrode configura-
tion. An Ag/AgCl electrode (FlexRef, WPI) was used as reference and 
a platinum wire (Alfa Aesar, 45093) was used as counter-electrode.

Prior to performance evaluation, electrodes were pulsed with 
10,000 charge-balanced pulses (1 ms, 15 µA). Exposure of electrodes 
to continuous pulsing protocols proceeded by 100 cyclic voltammetry 
cycles (−0.9 to +0.8 V) at 50 mV s−1, 20 repetitions of 5,000 pulses (1 ms) 
and redetermination of the open circuit potential.

Data analysis. Electrochemical characterization data were analysed 
using Python 3.7 packages (Numpy, Pandas, Scipy, Pyeis, Lmfit, Mat-
plotlib). Impedance spectroscopy data were fitted to an equivalent 
electric model consisting of a resistance (R) in series with a constant 
phase element (CPE). From there, the CPE value was approximated to 
a capacitance and divided by the microelectrode geometric area to 
obtain an equivalent value for the interfacial capacitance of EGNITE. 
Microelectrode charge storage capacitance (CSC) was calculated 
from cyclic voltammetry measurements by integrating the cathodic 
and anodic regimes of the measured current and normalizing by 
the scan rate. The cathodic and anodic charge storage capacitance 

http://www.nature.com/naturenanotechnology


Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01570-5

(cCSC and aCSC) at 100 mV scan rate of EGNITE are 45.9 ± 2.4 and 
34.6 ± 2.8 mC cm−2, respectively (n = 3). As reported for other materi-
als58, the obtained CSCs depend on the scan rate (Supplementary Fig. 5). 
To assess the presence of oxygen reduction reactions, we measured the 
CV waveform under nitrogen-purged electrolyte59 and did not observe 
substantial differences in waveform (Supplementary Fig. 6). However, 
our results do not fully address the impact of oxygen reduction reac-
tions in the charge injection capacity of EGNITE and additional work 
needs to be done to properly investigate this. Microelectrode charge 
injection capacity (CIC) was established by determining the current 
pulse amplitude that elicited a voltage difference (after removing 
the ohmic drop) that matched the electrode electrochemical water 
window (−0.9 V for cathodic and +0.8 V for anodic versus Ag/AgCl) 
(Supplementary Fig. 17)60.

Statistical analysis. Data are mean ± s.d., n = 18 for EIS and n = 3 for 
chronopotentiometries. Data of the map of cathodic capacitive voltage 
excursion are the mean of the cathodic capacitive voltage excursions 
for one event for each pulse shape of n = 3 electrodes.

Mechanical stability evaluation
Ultrasound sonication. EGNITE electrode arrays were placed inside a 
beaker filled with water in an ultrasound water bath (Elmasonic P 180H). 
Sonication was applied at 37 kHz for 15 min at 200 W, and followed by 
an additional 15 min of sonication at 37 kHz with the power elevated 
to 300 W. Images of electrodes were acquired before and after the 
sonication steps.

Bending test. The bending set-up (Fig. 2k) consisted of three cylindri-
cal rods; the middle one (diameter, 700 µm) was lowered down, produc-
ing bending angles of 131°. Three flexible microelectrode arrays were 
used for the bending test. Each array contained 18 microelectrodes 
of 50 µm diameter. Two arrays were measured after 10 and 20 cycles 
while one device was measured only for 10 cycles as it was damaged 
during handling after measuring. The bending test cycle consisted 
of a 10-s-long load application plus 10 s with no load. Devices were 
electrochemically characterized (EIS and CV) before and after 10 and 
20 bending cycles.

Epicortical neural recording
Epicortical implantation. All experimental procedures were per-
formed in accordance with the recommendations of the European 
Community Council and French legislation for care and use of labora-
tory animals. The protocols were approved by the Grenoble ethical 
committee (ComEth) and authorized by the French ministry (number 
04815.02). Sprague–Dawley rats (male, 4 months old, weighing ∼600 g) 
were anaesthetized intramuscularly with ketamine (50 mg per kg (body 
weight)) and xylazine (10 mg per kg (body weight)), and then fixed to a 
stereotaxic holder. Removing the temporal skull exposed the auditory 
cortex. Dura mater was preserved to avoid damaging the cortical tissue. 
A hole was drilled at the vertex to insert the reference electrode, and 
a second hole, 7 mm toward the front from the first one, was drilled to 
insert the ground electrode. The electrodes were 0.5-mm-thick pins 
used for integrated circuit sockets. They were placed to make electrical 
contact with the dura mater and fixed to the skull with dental cement. 
We then mounted the surface microelectrode ribbon on the auditory 
cortex as shown in Fig. 3b. The vein patterns identify the auditory 
cortex, in area 41 of Krieg’s rat brain map. Cortical signals were simul-
taneously amplified with a gain of 1,000 and digitized at a sampling 
rate of 33 kHz. A speaker 20 cm in front of a rat’s ear, contralateral to the 
exposed cortex, delivered acoustic stimuli. The stimuli delivered were 
monitored by a 0.25 inch microphone (Brüel & Kjaer, 4939) placed near 
the ear and presented in sound pressure level (dB SPL re 20 µPa). We 
examine the vertex-positive (negative-up) middle-latency responses 
evoked by alternating clicks at 80 dB SPL, and tone burst stimuli at 

70 dB SPL with frequencies ranging from 5 to 40 kHz, a rise and fall 
time of 5 ms and a duration of 200 ms.

Data analysis. Electrophysiological data were analysed using Python 
3.7 packages (Numpy, Pandas, Scipy, Neo, Elephant, Sklearn Matplot-
lib) and the custom library PhyREC (https://github.com/aguimera/
PhyREC). r.m.s. values were calculated with a sliding window of 20 ms 
at frequencies above 200 Hz. Spectrograms were calculated for a 
range between 70 Hz and 1.1 kHz. PSD was calculated over 60 s of 
continuous recordings. For a given electrode array, two PSDs were 
calculated: in vivo (IV) and post-mortem (PM). The SNR is expressed 
in dB (20 × ln(r.m.s.(IV)/r.m.s.(PM))) and interpolated for 20 points 
logarithmically spaced between 10 Hz and 1 kHz.

Statistical analysis. Epicortical neural data presented in Fig. 3 are 
taken from individual measurements on a single animal. In Fig. 3c, data 
from 64 electrodes are presented. In Fig. 3d, data from two selected 
electrodes are presented. In Fig. 3f, the PSD and SNR are calculated from 
64 EGNITE electrodes and are shown as mean ± s.d. In Supplementary 
Fig. 12c,d median data are presented for 192 EGNITE electrodes from 
n = 3 experiments and 60 platinum electrodes from n = 1 experiment.

Intracortical neural recording
Intracortical implantation. Animals were anaesthetized with a mix-
ture of ketamine/xylazine (75:1, 0.35 ml/28 g i.p.) and this state was 
maintained with an inhalation mask providing 1.5% isoflurane. Sev-
eral microscrews were placed into the skull to stabilize the implant, 
and the one on top of the cerebellum was used as a general ground. 
The probe was implanted in the prefrontal cortex (coordinates:  
AP, 1.5 mm; ML, ±0.5 mm; DV, −1.7 mm from bregma). The implanta-
tion was performed by coating the probe with maltose (see protocol 
below) to provide temporary probe stiffness and facilitate probe 
insertion. The probe was sealed with dental cement. TDT-ZifClip 
connectors were used to connect the probe to the electrophysi-
ological system via a miniaturized cable. After the surgery, the 
mouse underwent a recovery period of 1 week receiving analgesia 
(buprenorphine) and anti-inflammatory (meloxicam) treatments. 
Neural activity was recorded with the multichannel Open Ephys 
system at a sampling rate of 30 kHz with an Intan RHD2132 amplifier. 
The auditory task experiments were conducted in a soundproofed 
box, with two speakers inside using protocols based on previously 
described work61. The sound stimulus consisted of a 15-ms-long 
white noise click, repeated 100 times (cycles), each separated by 5 s 
(interstimulus interval). During the task, the animal was able to move  
freely.

Maltose stiffener protocol. An aqueous solution of maltose is heated 
up to the glass transition point (Tg), between 130 and 160 °C, using a 
hot plate or a microwave. Once the maltose is viscous, the backside of 
the probe is brought into contact only with the maltose. As the maltose 
cools down, it rigidifies and stiffens the probe.

Data analysis. Neural signals from each electrode were filtered offline 
to extract SUA and LFPs. SUA was estimated by filtering the signal 
between 450 and 6,000 Hz and the spikes from individual neurons 
were sorted using principal-component analysis with Offline Sorter 
v.4 (Plexon). To obtain LFPs, signals were downsampled to 1 kHz, 
detrended and notch-filtered to remove noise line artefacts (50 Hz 
and its harmonics) with custom-written scripts in Python. AEP SNR was 
calculated as the ratio of the peak N1 amplitude and the s.d. of a 20 ms 
period prior to the stimulus.

Statistical analysis. Data shown in Fig. 3h,i are mean ± s.d., n = 30 as the 
number of averaged trials. Data recorded from the same electrode are 
shown at days 30, 60 and 90. Data from a single animal are presented.
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Chronic epicortical biocompatibility
Surgical implantation of devices. A total of 27 adult, male, Sprague–
Dawley rats were used for this study (Charles River). Animals were 
housed at an ambient temperature of 21 ± 2 °C and a humidity of 
40–50%, on a 12 h light/12 h dark cycle. Rats were housed in groups and 
given free access to diet and water throughout the experimental period. 
Experimental procedures were carried out in accordance with the 
Animal Welfare Act (1998), under the approval of the UK Home Office 
and the local animal welfare ethical review body (AWERB). Animals were 
anaesthetized with isoflurane (2–3%) for the duration of surgery, and 
the depth of anaesthesia was monitored by the toe pinch reflex test. 
Animals were placed in a stereotaxic frame (Kopf, 900LS), located 
above a thermal blanket to maintain body temperature. A craniotomy 
hole (∼5 mm ×4 mm) was made 1 mm away from the midline using 
a dental drill with a 0.9 mm burr drill bit, the dura was removed and 
the epicortical device placed on the cortical surface of the brain. The 
craniotomy hole was sealed with Kwik-sil, followed by dental cement to 
secure, and the skin sutured closed. Subcutaneous injections of saline 
(1 ml per kg (body weight)) and buprenorphine (0.03 mg per kg (body 
weight)) were given to replace lost fluids and reduce postoperative 
pain, and anaesthesia was withdrawn.

Tissue collection and processing. Animals were terminated at 2, 6 or 
12 weeks postimplantation by an appropriate method for the type of 
analysis to be performed.

Histology and immunohistochemistry. At 2, 6 or 12 weeks postim-
plantation rats were terminated via cardiac perfusion with heparinized 
(10 U ml−1, Sigma-Aldrich) PBS, followed by 4% paraformaldehyde (PFA, 
Sigma-Aldrich) in PBS. Brains were postfixed in 4% PFA for 24 h, then 
transferred to 30% sucrose in PBS for at least 48 h before freezing in 
isopentane. The brains were then stored at −80 °C until cryosectioned 
at 25 µm. The tissue was then stained for ionized calcium binding 
adaptor molecule 1 (Iba-1) to determine the level of microglial activa-
tion. Briefly, tissue sections were blocked with 5% goat serum in PBS 
with 0.1% Triton-X for 1 h before overnight incubation at 4 °C with the 
primary antibody anti-Iba-1 (1:1,000, 019-19741; Wako). Sections were 
then stained with secondary antibody, anti-rabbit Alexa Fluor 594 
(1:400, A-11012; Thermo Fisher) for 1 h at room temperature. Slides 
were mounted with coverslips using Prolong Gold anti-fade mounting 
media with 4,6-diamidino-2-phenylindole (Thermo Fisher). The probe 
covered an area of 3 × 3.7 mm2 on the cortical surface of the brain; tissue 
sections selected for staining covered 3.2 mm in length of this region. 
Slides were imaged using a 3DHistech Pannoramic-250 microscope 
slide scanner at 20× and images were analysed using CaseViewer v.2.4 
(3DHistech). To assess for microglia activation, a 3.2 mm area was 
covered, with one image analysed every 100 µm. Images were taken 
at 8.5× magnification which detailed a section of the epicortical probe 
site, 3 mm from the midline of the brain, encompassing the area directly 
under the probe site.

Image processing. The microscopy data were image-processed using 
an algorithm for microglia phenotype characterization (Supplemen-
tary Fig. 13). Microglial activation was analysed using a custom CellPro-
filer* (Broad Institute, v.3.1.9 from https://cellprofiler.org/) pipeline. 
First, the EnhanceOrSuppressFeatures module was used to enhance 
filamentous structures like neurites by applying the tubeness enhance-
ment method. From the enhanced images, cells were segmented using 
the IdentifyPrimaryObjects module. Preliminary measurements of 
the cells suggested that the appropriate object diameter range was 
3–40 pixels. Objects outside this diameter range or touching the edge 
of the image were discarded. The cells were segmented using a two-class 
Otsu adaptive thresholding strategy with an adaptive window size of 
50 pixels. The objects identified by the IdentifyPrimaryObjects mod-
ule were input to the MeasureObjectSizeShape module to calculate 

the necessary properties for cell classification. In the ClassifyObjects 
module, the category on which to base classifications was specified to 
be AreaShape, and Extent was selected as the corresponding measure-
ment. The cells were classified as ‘activated’ or ‘non-activated’ based on 
their Extent property, which is the ratio of the area occupied by the cell 
to the area occupied by its bounding box. This classification approach 
was rationalized by the fact that activated microglia have large cell 
bodies and no processes, and thus occupy a far larger proportion of 
their bounding boxes than their non-activated counterparts. Finally, 
the CalculateMath and ExportToSpreadsheet modules were used to 
calculate and output the desired statistics.

Statistical analysis. Data sets are n = 3 for each device type (PI-only 
implant (PI); PI with exposed microfabricated gold (gold); and PI with 
microfabricated gold and EGNITE (EGNITE) at all time points) with the 
exception of 6 week gold which is n = 2 for ELISA data. Contralateral 
hemispheres were combined at each time point to give n = 9 at 2 and  
12 weeks postimplantation and n = 8 at 6 weeks postimplantation. 
Analysis of the data was done using GraphPad Prism v.8 software. 
Statistical analysis was completed using a two-way analysis of variance 
(ANOVA) with Tukey’s multiple-comparisons test where appropriate; 
P < 0.05 was deemed to be significant.

ELISA. Following the implantation period, animals were terminated by 
cervical dislocation. Brain tissue was extracted from both the right and 
left hemisphere of the brain, snap frozen in liquid nitrogen and stored 
at −80 °C until further use. Tissue was lysed using NP-40 lysis buffer 
(150 mM NaCl, 50 mM Tris-Cl, 1% Nonidet P40 substitute, Fluka, pH 
adjusted to 7.4) containing protease and phosphatase inhibitor (Halt 
Protease and Phosphatase Inhibitor Cocktail, Thermo Fisher), followed 
by mechanical disruption of the tissue (TissueLyser LT, Qiagen). Sam-
ples were then centrifuged for 10 min at 5,000 r.p.m., and the superna-
tant stored at 4 °C until further use. The LEGENDplex Rat Inflammation 
Panel (catalogue number 740401, BioLegend), a bead-based multiplex 
ELISA kit, was run to quantify the following cytokines; IL-1α, IL-1β, 
IL-6, IL-10, IL-12p70, IL-17A, IL-18, IL-33, CXCL1 (KC), CCL2 (MCP-1), 
granulocyte–macrophage colony-stimulating factor, interferon-γ 
and tumour necrosis factor. The kit was run according to the manu-
facturer’s instructions, with protein loaded at a fixed volume of 15 µl. 
Following incubation with supernatant the beads were run on a BD 
FACSVerse flow cytometer, and the data analysed using LEGENDplex 
data analysis software.

Neural stimulation
Intrafascicular implantation. All animal experiments were approved 
by the Ethical Committee of the Universitat Autònoma de Barcelona 
in accordance with the European Communities Council Directive 
2010/63/EU. Animals were housed at 22 ± 2 °C under a 12 h light/12 h 
dark cycle with food and water freely available. The sciatic nerve of 
anaesthetized female Sprague–Dawley rats (250–300 g, ∼18 weeks 
old) was surgically exposed and the TIME electrodes were implanted 
transversally across the sciatic nerve with the help of a straight needle 
attached to a 10-0 loop thread46. The process was monitored under a 
dissection microscope to ensure the correct position of the active sites 
inside the nerve fascicles (Fig. 4b). During the experiments, the animal 
body temperature was maintained with a heating pad.

Nerve stimulation was performed by applying trains of biphasic 
current pulses of a fixed duration of 100 µs per phase and increasing 
amplitude from 0 to 150 µA in 1 or 3 µA steps at 3 Hz for 33 s (Stimula-
tor DS4, Digitimer) through the different EGNITE microelectrodes. 
Simultaneously, the CMAPs were recorded from GM, TA and PL muscles 
using small needle electrodes (13 mm long, 0.4 mm diameter, stainless 
steel needle electrodes A-03-14BEP, Bionic) placed in each muscle62. The 
active electrode was placed on the muscle belly and the reference at the 
level of the tendon. Electromyography recordings were amplified (×100 
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for GM and TA, ×1,000 for PL; P511AC amplifiers, Grass), band-pass 
filtered (3 Hz to 3 kHz) and digitized with a PowerLab recording system 
(PowerLab16SP, ADInstruments) at 20 kHz.

Data analysis. The amplitude of each CMAP was measured from base-
line to the maximum negative peak. The voltage peak measurements 
were normalized to the maximum CMAP amplitude obtained for each 
muscle in the experiment. A selectivity index (SI) was calculated for each 
active site as the ratio between the normalized CMAP amplitude for one 
muscle, CMAPi, and the sum of the normalized CMAP amplitudes in 
the three muscles, following the formula SIi = nCMAPi/∑nCMAPj, at 
the minimum stimulation current amplitude that elicited a minimal 
functionally relevant muscular response (defined as at least 5% CMAP 
amplitude for one of the muscles with the respect to the maximum 
CMAP amplitude of that muscle that had been previously determined). 
Then, the active sites with highest SI for each of the three muscles were 
selected as the SIs for each muscle in a given experiment.

Chronic intraneural biocompatibility
Following a previously reported procedure50,63, the sciatic nerve of 
anaesthetized Sprague–Dawley female rats (250-300 g, ∼18 weeks 
old) was exposed and the devices for in vivo biocompatibility with and 
without EGNITE were longitudinally implanted in the tibial branch of 
the sciatic nerve (n = 6–8 per group). Briefly, the nerve is pierced at 
the trifurcation with a straight needle attached to a 10-0 loop thread 
(STC-6, Ethicon); the thread pulls the arrow-shaped tip of the bent elec-
trode strip. The tip is cut to take away the thread, and the tips of each 
arm are slightly bent to avoid withdrawal of the device. A longitudinal 
implant was chosen because it allows a better study of the foreign body 
response inside the nerve50.

Nerve and animal functional assessment. Animals were evaluated 
during follow-up postimplantation by means of nerve conduction, 
algesimetry and walking track locomotion tests62. For conduction 
tests, the sciatic nerve of the implanted and contralateral paws was 
stimulated by needle electrodes at the sciatic notch and the CMAP of 
the PL muscle was recorded as above. The latency and the amplitude 
of the CMAP were measured. For the algesimetry test, rats were placed 
on a wire net platform and a mechanical non-noxious stimulus was 
applied with a metal tip connected to an electronic Von Frey algesim-
eter (Bioseb). The nociceptive threshold (force in grammes at which 
the animals withdrew the paw) of implanted versus contralateral paws 
was measured. For the walking track test, the plantar surface of the 
hindpaws was painted with black ink and each rat was left to walk along 
a corridor. The footprints were collected, and the sciatic functional  
index calculated62.

Histology. After 2 or 8 weeks, animals were perfused with PFA (4%), 
and the sciatic nerves were harvested, postfixed, cryopreserved and 
processed for histological analysis. For the evaluation of the FBR, 
sciatic nerves were cut in 15-µm-thick transverse sections with a cry-
ostat (Leica CM190). Samples were stained with primary antibod-
ies for myelinated axons (anti-RT97 to label Neurofilament 200K, 
1:200; Developmental Studies Hybridoma Bank) and macrophages 
(anti-Iba-1, 1:500; Wako). Then, sections were incubated for 1 h at room 
temperature with secondary antibodies donkey anti-mouse Alexa 
Fluor 488 and donkey anti-rabbit Alexa Fluor 555 (1:200, Invitrogen). 
Representative sections from the central part of the implant in the tibial 
nerve were selected, images taken with an epifluorescence microscope 
(Eclipse Ni, Nikon) attached to a digital camera (DS-Ri2, Nikon) and 
image analysis performed with ImageJ software (National Institutes 
of Health). The amount of Iba-1-positive cells in the whole area of the 
tibial nerve was quantified and the thickness of the tissue capsule was 
measured as the mean distance of each side of the implant to the closest  
axons.

Statistical analysis. For statistical analysis of data, we used one- or 
two-way ANOVA followed by Bonferroni post hoc test for differences 
between groups or times. GraphPad Prism software was used for 
graphical representation and analysis. Statistical significance was 
considered when P < 0.05.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data obtained to evaluate the main findings of the 
paper are openly available in Zenodo at https://doi.org/10.5281/
zenodo.10208681. All other raw data are available from the corre-
sponding author upon reasonable request.

Code availability
Custom code developed for neurophysiological analysis is available at 
https://github.com/aguimera/PhyREC. Custom scripts can be found in 
Zenodo at https://doi.org/10.5281/zenodo.10208681.
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Antibodies
Antibodies used Intreneural: Primary antibodies: for myelinated axons (RT97 to label Neurofilament 200K, 1:200, Developmental Studies Hybridoma 

Bank, DSHB Cat# rt97, RRID:AB_528399) and macrophages (iba1, 1:500, Wako, 19-19741).  Secondary antibodies donkey anti-Mouse 
Alexa fluor 488 (A21202) and donkey anti-Rabbit Alexa fluor 555 (Invitrogen, 1:200, Ab150070). Cortical: primary antibody anti-Iba-1 
(1:1000, 019-19741, Wako). Secondary antibody, anti-rabbit Alexa Fluor 594 (A-11012, 1:400; Thermofisher).

Validation Anti-Iba-1 (Wako 019-19741). This antibody is confirmed by the manufacturer to react with rat IBA1 and validation images can be 
obtained here: https://labchem-wako.fujifilm.com/us/product/detail/W01W0101-1974.html 
 
RT97: According to on the manufacturer’s website: 
Confirmed Species Reactivity: Bovine, Chicken, Human, Mouse, Rat 
Additional Information: RT97 reacts with neurofibrillary tangles and plaques [PMID 6178036]. RT97 cross-reacts with neurofilament 
medium. RT97 has been used as a cell marker for neurons. 
Relevant citation provided on the manufacturer's website: 
Investigative ophthalmology & visual science 51.4 (2010 Apr): 2248-62. 
Pentoxifylline promotes recovery of erectile function in a rat model of postprostatectomy erectile dysfunction. 
Lue TF 
Other relevant citations: 
[1] I. Delgado-Martínez, M. Righi, D. Santos, A. Cutrone, S. Bossi, S. D?Amico, J. Del Valle, S. Micera, X. Navarro, S. D’Amico, Fascicular 
nerve stimulation and recording using a novel double-aisle regenerative electrode, J. Neural Eng. 14 (2017) 046003. https://
doi.org/10.1088/1741-2552/aa6bac. 
 
Iba1: According to on the manufacturer’s website: 
Confirmed Species Reactivity: Human, Mouse, Rat,  
Additional Information: Iba1 (Ionized calcium-binding adapter molecule1) is an approximately 17 kDa calcium-binding protein. It is 
used as a microglial marker because it is expressed specifically in microglia in the central nervous system1). It is expressed in both 
resting and activated microglia, but is reportedly expressed more highly in activated microglia2). It is also expressed in macrophages 
in peripheral tissues and is known as AIF-1 (Allograft inflammatory factor-1). Iba1 binds to F-actin in cells to form actin bundles. The 
formation of actin bundles is thought to be required for the membrane ruffling observed during cell migration and phagocytosis3). 
Relevant citation provided on the manufacturer's website: 
    Sasaki, Y., Ohsawa, K., Kanazawa, H., Kohsaka, S., & Imai, Y. Biochem. Biophys. Res. Commun., 286(2), 292(2001). 
    Iba1 is an actin-cross-linking protein in macrophages/microglia. 
    Other relevant citations: 
    [1] N. De la Oliva, X. Navarro, J. del Valle, Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrode Implants in 
the Peripheral Nerve of the Rat, Anat. Rec. 301 (2018) 1722–1733. https://doi.org/10.1002/ar.23920. 
 
Iba-1 (Wako 019-19741): IHC in rats is included https://labchem-wako.fujifilm.com/us/product_data/docs/00055446_doc02.pdf

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Neural recording: Sprague Dawley rats, males, 4-months old.  
Chronic Epicortical Biocompatibility: Adult (6-7 weeks old), male, Sprague-Dawley rats(Charles River, England).  
Intraneural Stimulation and biocompatibility: Female Sprague-Dawley rats (250-300 g, ~18 weeks old).

Wild animals No wild animals were used in this study.

Reporting on sex Not aplicable in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight Neural recording: All experimental procedures were performed in accordance with the recommendations of the European 
Community Council and French legislation for care and use of laboratory animals. The protocols were 
approved by the Grenoble ethical committee (ComEth) and authorized by the French ministry (number 
04815.02).  
Chronic Epicortical Biocompatibility: Experimental procedures were carried out in accordance with the Animals (Scientific 
Procedures) Act 1986, under the approval of the Home Office and University of Manchester local animal welfare ethical review body 
(AWERB) (Project Licence P089E2EOA).  
Intraneural Stimulation and biocompatibility: All animal experiments were approved by the Ethical Committee of the Universitat 
Autònoma de Barcelona in accordance with the European Communities Council Directive 2010/63/EU. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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