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We present the attenuated spline reconstruction technique (aSRT) which provides

an innovative algorithm for single photon emission computed tomography

(SPECT) image reconstruction. aSRT is based on an analytic formula of the

inverse attenuated Radon transform. It involves the computation of the

Hilbert transforms of the linear attenuation function and of two sinusoidal

functions of the so-called attenuated sinogram. These computations are

achieved by employing the attenuation information provided by computed

tomography (CT) scans and by utilizing custom-made cubic spline interp-

olation. The purpose of this work is: (i) to present the mathematics of aSRT,

(ii) to reconstruct simulated and real SPECT/CT data using aSRT and (iii)

to evaluate aSRT by comparing it to filtered backprojection (FBP) and to

ordered subsets expectation minimization (OSEM) reconstruction algorithms.

Simulation studies were performed by using an image quality phantom and

an appropriate attenuation map. Reconstructed images were generated for 45,

90 and 180 views over 360 degrees with 20 realizations and involved Poisson

noise of three different levels (NL), namely 100% (NL1), 50% (NL2) and 10%

(NL3) of the total counts, respectively. Moreover, real attenuated SPECT sino-

grams were reconstructed from a real study of a Jaszczak phantom, as well as

from a real clinical myocardial SPECT/CT study. Comparisons between

aSRT, FBP and OSEM reconstructions were performed using contrast, bias

and image roughness. The results suggest that aSRT can efficiently produce

accurate attenuation-corrected reconstructions for simulated and real phan-

toms, as well as for clinical data. In particular, in the case of the clinical

myocardial study, aSRT produced reconstructions with higher cold contrast

than both FBP and OSEM. aSRT, by incorporating the attenuation correction

within itself, may provide an improved alternative to FBP. This is particularly

promising for ‘cold’ regions as those occurring in myocardial ischaemia.
1. Introduction
Single photon emission computed tomography (SPECT) is an important

nuclear medicine modality with vast preclinical and clinical applications,

especially in the medical fields of cardiology and neurology. This emission

tomography technique provides information regarding functional aspects of a

patient’s organs, particularly the heart and the brain (functional cardiac and

functional brain imaging).

SPECT utilizes the unique chemical characteristics of decaying radiophar-

maceuticals, consisting of a targeting agent labelled with a radioisotope, such

as technetium (99Tc). The radiopharmaceutical is introduced into the patient

intravenously and it is distributed in the body in a fashion governed by its
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biochemical properties [1]. The injected radiotracers radiate

single photons and the detectors count these individual

photons (g-ray events) [2].

Nuclear medicine image reconstruction is performed, as in

all tomography-related inverse problems, by reconstructing

projection data, usually stored in the form of sinograms [3].

There exist several reconstruction algorithms, characterized

either as analytic or iterative. The prevailing analytic image

reconstruction technique is filtered backprojection (FBP), whereas

the predominant iterative image reconstruction approach is

ordered subsets expectation maximization (OSEM). In this work,

we shall focus on analytic reconstruction techniques, assuming

parallel-beam geometry.

Attenuation correction is an important part of the SPECT

reconstruction process, especially in the context of myocardial

perfusion imaging [4]. It is often even considered as the poten-

tial ‘holy grail’ of the SPECT imaging field [5]. The main

objective of attenuation correction is to minimize false-positive

defects, so that attenuation-corrected reconstructions would

allow for better quantification of abnormalities [6]. However,

until quite recently (early 2000s), only less than 10% of

SPECT cameras worldwide were equipped with attenuation

correction systems [7]. Nowadays, hybrid SPECT/CT is

becoming a standard dual medical imaging modality, with

various SPECT/CT systems being currently commercially

available. This dual imaging modality is now suitable for a

vast variety of diagnostic applications with clinical impact,

essentially addressing the ultimate goal in nuclear medicine

of shortening the acquisition time and of providing accurate,

attenuation-corrected fusion imaging [8].

SPECT reconstruction algorithms aim to invert the so-

called attenuated Radon transform, which constitutes a certain

generalization of the two-dimensional Radon transform.

The attenuated Radon transform is the line integral of the dis-

tribution of the radioactive material inside the patient’s body,

attenuated with respect to the associated linear attenuation

coefficient. SPECT data are usually stored as camera projec-

tions, which can be expressed as attenuated sinograms,

similar to the sinograms of positron emission tomography

(PET). The analytical approach to SPECT reconstruction

involves the inverse attenuated Radon transform (IART), i.e.

the inversion of the attenuated sinogram. An explicit math-

ematical formulation of IART is given in [9], following the

pioneering work of Novikov [10]. Other analytical SPECT

reconstruction techniques based on Novikov’s work [10]

include Natterer’s inversion formulæ [11], Kunyansky’s

elegant reconstruction algorithm [12] (also viewed as a gener-

alization of the seminal Tretaik–Metz algorithm [13] which is

further improved by Metz & Pan [14]), and Bal and Moireau’s

method [15]. Furthermore, Ammari et al. [16] provide a

closely related asymptotic imaging technique in photoacous-

tics, in the presence of wave attenuation. The numerical

implementation of all these analytic algorithms is based on

the concept of filtered backprojection: these numerical tech-

niques employ the convolution property of the Fourier

transform in order to compute the Hilbert transform involved

in IART and apply appropriate filters for the cancellation of

high frequencies.

In this paper, we present an alternative numerical technique

for the numerical evaluation of the IART occurring in SPECT,

namely the attenuated spline reconstruction technique (aSRT) for

SPECT. aSRT is a novel two-dimensional analytic image recon-

struction algorithm, which is based on a new, improved
mathematical derivation of an earlier implementation

presented in [9]. Instead of the traditional Fourier-based

methods, we employ custom-made cubic splines for the com-

putation of the Hilbert transforms of the linear attenuation

function and of two sinusoidal functions of the so-called attenu-
ated sinogram. We note that the techniques used in [9] and in the

present work both employ custom-made cubic splines. Indeed,

in our case, we applied splines to compute the Hilbert trans-

form of m̂ (defined in equation (2.5)), the two sinusoidal

functions of the attenuated sinogram, namely GC and GS

(defined in equations (2.8)) and the function G (defined in

equation (2.7)). The corresponding analysis is found in §2.2.

These functions are different from the functions encountered

in [9] (this becomes clear by comparing equation (3.6) of [9]

with equation (2.6) of proposition 2.1 of the present paper).

Hence, this new derivation improves substantially the earlier

formulation, leading to simplified expressions which have the

important advantage that they can be implemented numeri-

cally in an efficient way. aSRT, in comparison to FBP and

OSEM, has the advantage of incorporating attenuation correc-

tion within itself. Furthermore, all necessary calculations are

performed in the physical (image) space, as opposed to the

Fourier space.

It is important to note how aSRT differs from SRT for PET

[17,18]. aSRT constitutes a substantial generalization over SRT:

SRT aims to invert the non-attenuated Radon transform, i.e. the

line integrals of the radioactive distribution, while aSRT inverts

the corresponding line integrals attenuated with respect to the

linear attenuation function (m). Although in both PET and

SPECT the transmitted gamma rays suffer a relative intensity

loss, outlined by the well-known Beer’s law, from a mathemat-

ical point of view, the inversion occurring in PET is a special

case of the corresponding inversion in SPECT. In PET, the

attenuation factor is the integral of m along a single line,

whereas in SPECT the attenuation factor is the integral of m

along a single line segment.

The aim of this work is (a) to present the mathematical set-

ting of aSRT, (b) to reconstruct simulated as well as real SPECT/

CT data using aSRT in order to evaluate its performance and

(c) to compare aSRT with FBP and OSEM. This is the first

work involving the analytic inversion of the attenuated

Radon transform, where reconstructions of real clinical data

are presented, and improved contrast and bias with respect to

FBP are demonstrated.
2. Mathematical formulation
2.1. Inverse attenuated Radon transform
Consider a directed line L on the plane specified by two real

numbers, namely the signed distance from the origin r,

21 , r , 1, and the angle with the x1-axis u, 0 � u , 2p

(figure 1). The unit vectors parallel (ek) and perpendicular

(e?) to this line are given by

ek ¼ ( cos u, sin u),

e? ¼ (� sin u, cos u):

Every point on L in Cartesian coordinates x ¼ (x1, x2) can

be expressed in terms of the local coordinates (r, t) via

the equation

x ¼ r e? þ t ek,



x2

x1

qj r(i)

t(i)
t f
(i)

r

m (x1, x2)

(x1
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L

Figure 1. A two-dimensional object, with attenuation coefficient m(x1, x2), being imaged with parallel-beam projection geometry. Both Cartesian (x1, x2) and local
(r, t) coordinates are indicated.
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where t is a parameter along L. Hence,

x1 ¼ t cos u� r sin u (2:1a)

and

x2 ¼ t sin uþ r cos u: (2:1b)

We can invert equations (2.1) and express the local coor-

dinates (r, t) in terms of the Cartesian coordinates (x1, x2)

and the associated angle u:

r ¼ x2 cos u� x1 sin u (2:2a)

and

t ¼ x2 sin uþ x1 cos u: (2:2b)

The line integral of a function f : R2 ! R attenuated with

respect to the attenuation function m : R2 ! R is called the

attenuated Radon transform of f (x1, x2). It is usually stored in

the form of the so-called attenuated sinogram, denoted by

f̂m(r, u):

f̂m(r, u) ¼
ð1

�1

e�
Ð 1

t
m(s cos u�r sin u,s sin uþr cos u) d s

� f(t cos u� r sin u, t sin uþ r cos u) dt,

0 � u , 2p, �1 , r , 1: (2:3)

Associated with equation (2.3) there exists the following

inverse problem: given the functions m(x1, x2), 2 1 , x1,

x2 , 1, and f̂m(r, u), 0 � u , 2p, 21 , r , 1, determine

the function f (x1, x2). The relevant inversion formula, called

the IART, was first derived by Novikov [10], extending the

derivation of the analogous result for the inverse Radon

transform presented in [19]. It was later shown in [9] that

the IART formula can actually be obtained via a slight modi-

fication of a certain formula contained in [19]. The IART is

given by

f(x1, x2) ¼ 1

4p
(@x1
� i@x2

)

ð2p

0

eiuJ(x1, x2, u) du,

�1 , x1, x2 , 1, (2:4a)
where the function J is defined by

J(x1, x2, u) ¼ eM(t,r,u)Lm(r, u) f̂m(r, u)jt¼x2 sin uþx1 cos u
r¼x2 cos u�x1 sin u

, (2:4b)

with M and Lm defined by

M(t, r, u) ¼
ð1

t

m(s cos u� r sin u, s sin uþ r cos u) ds (2:4c)

and

Lm(r, u) ¼ eP�m̂(r,u)P�eP�m̂(r,u) þ e�Pþm̂(r,u)PþePþm̂(r,u): (2:4d)

In equation (2.4d), m̂ represents the Radon transform of the

attenuation function m, i.e.

m̂(r, u) ¼
ð1

�1

m(t cos u� r sin u, t sin uþ r cos u) dt,

0 � u , 2p, �1 , r , 1, (2:4e)

with the operators P+ denoting the usual projection

operators in the variable r, i.e.

(P+g)(r) ¼+
g(r)

2
þ 1

2ip

þ1

�1

g(r)

r� r
dr, �1 , r , 1,

(2:4f)

where
Þ

denotes the principal value integral.

In what follows, it is useful to define F as half the Hilbert

transform of m̂, i.e.

F(r, u) ;
1

2
H{m̂(r, u)} ¼ 1

2p

þ1

�1

m̂(r, u)

r� r
dr, (2:5)

where H denotes the Hilbert transform in the variable r.

Proposition 2.1. The IART formula defined in equation (2.4a) is
equivalent to the representation

f(x1, x2) ¼ � 1

2p

ð2p

0

eM(t,r,u)[Mr(t, r, u)G(r, u)

þ Gr(r, u)]jr¼x2 cos u�x1 sin u

t¼x2 sin uþx1 cos u
du, (2:6)
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where M is defined in equation (2.4c), the subscripts denote
differentiation with respect to r, and G is defined by

G(r, u) ¼ e�(1=2)m̂(r,u)[cos (F(r, u))GC(r, u)

þ sin (F(r, u))GS(r, u)], (2:7)

with the functions GC and GS defined by

GC(r, u) ¼ 1

2p

þ1

�1

e(1=2)m̂(r,u)cos F(r, u)
f̂m(r, u) dr

r� r
(2:8a)

and

GS(r, u) ¼ 1

2p

þ1

�1

e(1=2)m̂(r,u)sin F(r, u)
f̂m(r, u) dr

r� r
: (2:8b)

Proof. We apply the operator Lm which is defined in equation

(2.4d), on the attenuated Radon transform f̂m which is defined

in equation (2.3):

(Lm f̂m)(r, u) ¼ {eP�m̂(r,u)P�eP�m̂(r,u)

þ e�Pþm̂(r,u)PþePþm̂(r,u)}f̂m(r, u): (2:9)

Equations (2.4f ) and (2.5) imply

eP+m̂ ¼ e+m̂=2�iF: (2:10)

Hence,

eP�m̂P�{e�P�m̂ f̂m} ¼ e�m̂=2�iF � 1

2
em̂=2þiFf̂m þ

1

2i
H{em̂=2þiFf̂m}

� �
(2:11a)

and

e�Pþm̂Pþ{ePþm̂f̂m} ¼ e�m̂=2þiF 1

2
em̂=2�iFf̂m þ

1

2i
H{em̂=2�iFf̂m}

� �
:

(2:11b)

Using equations (2.11), as well as the fact that eiF ¼ cos F þ
isin F, we can simplify equation (2.9) as follows (for details,

see appendix A):

(Lm f̂m)(r, u) ¼ �2iG(r, u), (2:12)

where G(r, u) is defined in (2.7). It is important to note that

equation (2.12) implies that the function i(Lm f̂m) is real.

Thus, equations (2.4b) and (2.12) imply that

J(x1, x2, u) ¼ �2i[eM(t,r,u)G(r, u)]t¼x2 sin uþx1 cos u
r¼x2 cos u�x1 sin u

: (2:13)

Hence, using the identity

(@x1 � i@x2 ) ¼ e�iu(@t � i@r), (2:14)

which arises from the application of the chain rule to the local

coordinates defined in equations (2.1), we can calculate the

action of the above operator on J:

(@x1� i@x2 )J¼�2ie�iu(@t� i@r){eMG}r¼x2 cosu�x1 sinu
t¼x2 sinuþx1 cosu

¼�2ie�iu[eM(Mt� iMr)GþeM(Gt� iGr)]r¼x2 cosu�x1 sinu
t¼x2 sinuþx1 cosu

¼�2e�iueM[� imGþMrGþGr]r¼x2 cosu�x1 sinu
t¼x2 sinuþx1 cosu

,

(2:15)

where we have used the identities

Mt(t, r, u)jr¼x2 cos u�x1 sin u

t¼x2 sin uþx1 cos u
¼ m(x1, x2) and Gt(r, u) ¼ 0:
By inserting the operator (@x1
� i@x2

) inside the integral in

the right-hand side of equation (2.4a), and by combining

equations (2.16) and (2.15), we find

f(x1, x2) ¼ � 1

2p

ð2p

0

eM[� imGþMrGþ Gr]jr¼x2 cos u�x1 sin u

t¼x2 sin uþx1 cos u
du:

(2:16)

The first term of the integral on the right-hand side of

equation (2.16) can be simplified as follows:

� i

ð2p

0

m(x1, x2)[eM(t,r,u)G(r, u)]t¼x2 sin uþx1 cos u
r¼x2 cos u�x1 sin u

du

¼ 1

2
m(x1, x2)

ð2p

0

J(x1, x2, u) du: (2:17)

Equation (2.9) of [9], with m replaced by u, evaluated at l ¼ 0

yields

u(x1, x2, 0) ¼ 1

2p

ð2p

0

J(x1, x2, u) du:

Furthermore, the limit l! 0 of equation (2.2) of [9] yields

@u(x1, x2, 0)

@�z
¼ 0,

which means that u is analytic everywhere, including infinity.

Recalling that u satisfies the boundary condition

u ¼ O
1

z

� �
, z! 1,

it follows that the entire function u vanishes (Liouville’s

theorem), thus ð2p

0

J(x1, x2, u) du ¼ 0: (2:18)

Hence, taking into account equation (2.18), equation (2.17)

implies thatð2p

0

m(x1, x2)[eM(t,r,u)G(r, u)]t¼x2 sin uþx1 cos u
r¼x2 cos u�x1 sin u

du ¼ 0,

and therefore equation (2.4a) becomes equation (2.6). B
2.2. Numerical implementation of inverse attenuated
Radon transform using splines

In order to evaluate all the quantities appearing in equation

(2.6), we employ the Gauss–Legendre quadrature for the

computation of the function M(t, r, u), as well as piecewise

polynomial functions (splines) [20] for the computation of

the functions F(r, u) and G(r, u). For all the functions involved

in IART, we suppose that the evaluation of the solution to the

inverse problem (2.4) is performed at the points {x(i)
1 , x(j)

2 }n
i,j¼1,

i.e. in a given square reconstruction grid.
2.2.1. The evaluation of M(t, r, u) and Mr(t, r, u)
The integral (2.4c) involves the computation of the integral of

the given attenuation function m(x1, x2) from s ¼ t (i) to

s ¼ t
(i)
f ; see figure 1. However,

(r(i))2 þ (t(i)
f )2 � R2,

where R denotes the radius of the circular path centred at

the origin, which encapsulates the support of both functions
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f (x1, x2) and m(x1, x2). Hence,

M(t(i), r(i), u j) ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2�(r(i) )2
p

t(i)
m(s cos u j

� r(i) sin u j, s sin u j þ r(i) cos u j) ds: (2:19)

This integral can be computed using the Gauss–Legendre

quadrature with two functional evaluations at every step, i.e.ðb
a

f(s) ds � 1

2
(b� a)[f(t1)þ f(t2)],

where

t1 ¼ aþ 1

2
�

ffiffiffi
3
p

6

� �
(b� a), t2 ¼ aþ 1

2
þ

ffiffiffi
3
p

6

� �
(b� a):

For the evaluation of Mr(t, r, u), we employ an appropriate

finite difference scheme, as in [21].
5:20180509
2.2.2. The evaluation of F(r, u)
For the evaluation of F(r, u), we proceed in a similar way as in

[17], but here instead of evaluating the derivative of the

Hilbert transform of m̂(r, u), we evaluate the Hilbert

transform of m̂(r, u), itself. For details, see appendix B.
2.2.3. The evaluation of G(r, u) and Gr(r, u)
Let fC and fS denote the following functions:

fC(r, u) ¼ e(1=2)m̂(r,u) cos (F(r, u))̂fm(r, u),

0 � u , 2p, � 1 � r � 1, (2:20a)

and

fS(r, u) ¼ e(1=2)m̂(r,u) sin (F(r, u))̂fm(r, u),

0 � u � 2p, � 1 � r � 1, (2:20b)

where m̂ , f̂m and F are defined in equations (2.4e), (2.3) and

(2.5), respectively.

We suppose that the attenuated sinogram, f̂m(r, u), is

given at the points {ri}
n
1 . Then, by computing m̂(r, u) and

F(r, u) at these points, we can compute the functions

fC(r, u) and fS(r, u) at the same points. Hence, using equation

(2.20), see appendix B, and replacing f (r, u) by fC(r, u) and

fS(r, u), we can compute GC(r, u) and GS(r, u), respectively.

In order to eliminate the logarithmic singularities of

GC(r, u) and GS(r, u) we require that both fC and fS vanish

at the endpoints:

fC(�1, u) ¼ fC(1, u) ¼ 0 (2:21a)

and

fS(�1, u) ¼ fS(1, u) ¼ 0: (2:21b)

These equations are valid provided that

f̂m(�1, u) ¼ f̂m(1, u) ¼ 0, (2:22)

which in nuclear medicine cases is true, due to the fact that

we assume that the attenuated sinogram has finite support.

By combining GC(r, u) and GS(r, u), we are able to calculate

G(r, u) as in equation (2.7).

For the numerical evaluation of the derivative of G with

respect to r, Gr(r, u), we employ a suitable finite difference

scheme.
3. Material and methods
3.1. Simulations
3.1.1. Simulated phantom
For the purposes of our simulations, we have modelled a rotating,

single-head gamma camera comprising 129 scintillation crystals.

The corresponding square image grid size used was 129 � 129

pixels. The image and detector pixel size was in all simulation

studies 4 mm. We have performed an assessment of aSRT by

employing simulated data of an image quality (IQ) phantom.

This specific phantom has been employed in order to quantitate

the ability of each of the above three reconstruction techniques to

detect both hot and cold lesions of variable size inside a radioactive

background. The IQ phantom consists of four circular hot regions

(with diameters of 12.7, 15.9, 19.1 and 25.4 mm, denoted with S1 to

S4, respectively) and two circular cold regions (with diameters of

31.8 and 38 mm, denoted with S5 and S6, respectively), inside a

larger warm region that simulates the background. The diameter

of the larger background circle is 21.6 cm. The radioactive con-

centration ratio between hot regions and the warm background

(ah/ab) is 4 : 1 for the four hot regions.

Simulated attenuated sinograms of the IQ phantom were gen-

erated in STIR (Software for Tomographic Image Reconstruction)

[22] using appropriate attenuation maps. The sinograms were

acquired for 45, 90 and 180 views over 360 degrees. Three different

noise levels (NL) were investigated: 100% (NL1), 50% (NL2) and

10% (NL3) of the total counts. Using the initial noiseless sinogram

(NL0) as the starting point, we generated 20 Poisson-noise realiz-

ations at the three different levels (NL1, NL2 and NL3). For 180

views, the noiseless sinograms contain 6 � 106 events, while the

noisy sinograms from each noise level contain 6, 3 and 0.6 � 106

events, respectively. Similarly, in the cases of 90 and 45 views,

the corresponding numbers of events were 3 (NL0), 3 (NL1), 1.5

(NL2) and 0.3 � 106 (NL3) events, and 1.5 (NL0), 1.5 (NL1), 0.75

(NL2) and 0.15 � 106 (NL3) events, respectively.

3.1.2. Implementation of aSRT, of FBP and of OSEM

aSRT reconstructions
All aSRT reconstructions were performed in Matlab. There was no

post-reconstruction filtering applied in these aSRT reconstructions.

FBP reconstructions
All simulated non-corrected FBP reconstructions were generated in

the open-source software library STIR [22]. Subsequently, a ramp

filter was applied to these reconstructions with a cut-off frequency

equal to the Nyquist frequency. It is worth noting that the STIR

library does not provide a dedicated routine for attenuation correc-

tion for FBP in SPECT/CT. Therefore, all FBP reconstructions were

attenuation corrected in Matlab according to the first-order Chang’s

attenuation correction method. For this purpose, CT attenuation

maps were employed as in [23]. We note that Chang’s method is

by design only an approximate attenuation correction method.

OSEM reconstructions
OSEM attenuation-corrected reconstructions were generated

with 5 subsets and 10, 20, 30 and 50 iteration updates, namely

OSEM10, OSEM20, OSEM30 and OSEM50, respectively. All

OSEM reconstructions were generated in STIR with attenuation

correction taken into account; neither scatter correction nor

detector/collimator response was modelled.

3.2. Real data
For the purposes of real data reconstructions, we have employed

data from a real Jaszczak phantom study as well as from a

clinical cardiac study.
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3.2.1. Real Jaszczak phantom
We have performed reconstructions of a real Jaszczak phantom,

with data provided by a Mediso AnyScanw SC SPECT/CT scanner

equipped with the NuclineTM all modality acquisition software. For

this technetium (99Tc) SPECT study, low energy high resolution

parallel collimators were used. The attenuated sinograms were pro-

vided by Mediso Medical Imaging Systems, Budapest. The

phantom is the standard Jaszczak phantomTM and consists of six

cold solid spheres with diameters of 12.7, 15.9, 19.1, 25.4, 31.8

and 38 mm, denoted by S1 to S6, respectively. The number of

views used was 128 and the corresponding reconstruction grid

size was 256 � 256 pixels. The image and detector pixel size was

2.13 mm. The number of events per slice was approximately

1.2 � 106. The total amount of radioactivity in the phantom was 8

mCi (296 MBq) of technetium-99 m isotope. The total scan duration

was 64 min, corresponding to 30 s acquisition for each of the 128

projections collected. Three realizations (R ¼ 3) were utilized

during this real phantom SPECT/CT study. We note that the

standard Jaszczak phantom involves only cold regions.

3.2.2. Clinical data
Real clinical data were acquired from a GE Millennium VG

HawkeyeTM SPECT/CT system. The Millennium VG camera

includes two extra-large rectangular Digital XP detectors, which

can image isotopes of energies within the range of 59 keV to 511

keV. A patient was injected with 3 mCi (111 MBq) of the

thallium-201 isotope. A sinogram of this myocardial perfusion
201Tl stress study was acquired for 60 views and was reconstructed

using aSRT, FBP and OSEM in a 64 � 64 reconstruction grid. All

necessary corrections (attenuation, scatter, detector/collimator

response, etc.) were performed according to the manufacturer’s

suggested clinical protocol. The image and detector pixel size

was 7.81 mm. The number of events per slice was approximately

1.4 � 106. The total scan duration was 17 min, corresponding to

17 s acquisition for each of the 60 projections collected.

3.3. Image metrics
In order to determine the quality of the reconstructed images of

the phantoms investigated, a region of interest (ROI) analysis

was performed. Comparisons with FBP and OSEM were per-

formed evaluating contrast, bias and image roughness, as

described below and in [18,24]. The following image quality

metrics were calculated: (a) hot region contrast, Ch, (b) cold

region contrast, Cc, (c) %bias for hot regions, bh, (d) bias % of back-

ground for cold regions, bc and (e) background image roughness,

IR. In order to determine the ROI statistics at each solid sphere,

circular ROIs were employed in Matlab. The diameters of all

ROIs were the same as the diameters of the lesions being

measured. Several image metrics were calculated for all noise

levels and averaged over all realizations, R.

The hot region contrast (Ch) was calculated for each hot

circular region using the following equation [17]:

Ch ¼
1

R

XR

r¼1

mh,r=mb,r � 1

ah=ab � 1
, (3:1)

where mh,r and mb,r are the average counts (mean pixel value)

measured in each hot sphere and in the background ROI, respect-

ively, for each realization, r, and ah and ab are the actual

radioactivity of each hot region and the background, respect-

ively. In the case of the simulated IQ phantom used, the ratio

(ah/ab) is four. We note that Ch is also referred to in the literature

as contrast recovery coefficient.

In a similar manner, the cold region contrast (Cc) was

calculated for each cold circular region using the equation

Cc ¼ 1� 1

R

XR

r¼1

mc,r

mb,r
, (3:2)
where mc,r are the average counts (mean pixel value) measured in

each cold circular region and in the background ROI.

The %bias for hot spheres (bh) for each hot circular region

was calculated using the equation

bh ¼
100

ah
� 1

R

XR

r¼1

(mh,r � ah)

" #
, (3:3)

and the bias % of background for cold regions (bc) for each cold

circular region was calculated via the formula

bc ¼
100

ab
� 1

R

XR

r¼1

mc,r

 !
: (3:4)

Finally, the image roughness (IR) of the background was

calculated as in [18].

Similar considerations were used for the determination of the

cold contrast for the real studies investigated. For the Jaszczak

phantom, we employed ROIs similar to the ones of the simu-

lations. For the clinical myocardial study, we performed an

ROI analysis as follows: we selected a circular region in the

centre of the area of the left ventricle of the patient. This area cor-

responds to the uptake of the cold region. Then, we manually

drew an ROI in the myocardial area over the annulus, which cor-

responds to the warm background area of the heart. We drew

similar ROIs for three consecutive slices and averaged the cold

contrast measurements, as in equation (3.2).
4. Results
4.1. Simulations
The reconstruction time per slice, for a 45-projections sinogram

was 2.3 s for aSRT, 3.7 s for OSEM20, 5.2 s for OSEM30, and

13.7 s for attenuation-corrected FBP (using an Intelw Xeonw

CPU E3-1241 processor, 16 GB RAM). The longer time in FBP

reconstructions is due to the fact that the attenuation correction

was performed in Matlab. Therefore, in this case, aSRT was

faster than both OSEM and FBP.

The simulated IQ phantom is presented in figure 2a, and

the corresponding attenuation map is presented in figure 2b.

The ROIs employed in order to determine the image metrics

are shown in figure 2c. Reconstructed images using aSRT,

FBP, and OSEM with 10, 20, 30 and 50 iterations for the IQ

phantom, for all numbers of views (45, 90 and 180) are pre-

sented in figure 3 for noise level 2 (NL2) and in figure 4 for

noise level 3 (NL3). The images presented in these figures are

characteristic reconstructions of one (out of twenty) Poisson-

noise realizations at each noise level. In all the reconstructed

images presented, the all-black colour represents zero values,

whereas the value of the all-white colour represents the maxi-

mum value of the IQ phantom. Therefore, the scale used in

figures 3 and 4 is the same for all sub-images involved.

The contrast and bias for the hot 25.4 mm (S4) and the

cold 38 mm (S6) spheres as a function of image roughness

for 90 and 180 views are presented in figures 5 and 6 respect-

ively, for the various reconstruction techniques used. In each

plot, the leftmost datum point in each curve corresponds to

NL1, the midpoint to NL2, and the rightmost to NL3.

4.2. Real data
4.2.1. Real Jaszczak phantom
aSRT and FBP reconstructions of the real Jaszczak phantom,

as well as the corresponding attenuation map (CT) and ROIs,

are presented in figure 7. We note that OSEM reconstructions



(a) (c) (d )(b)

Figure 2. (a) IQ phantom, indicating four hot (white) and two cold regions (black) inside warm background (dark grey). (b) Attenuation map for the IQ phantom
simulations, indicating four hot (white) and two cold regions (black) inside warm a background (light grey), corresponding to linear attenuation coefficient values m
(cm21) of 0.176, 0 and 0.154, respectively. (c,d) Circular ROIs employed for the calculation of image metrics.
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Figure 3. IQ phantom reconstructions at noise level 2 (NL2, 50% of counts)
with various reconstruction methods (aSRT, FBP and OSEM with 10, 20, 30
and 50 iterations) at 45, 90 and 180 views.
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with various reconstruction methods (aSRT, FBP and OSEM with 10, 20, 30
and 50 iterations) at 45, 90 and 180 views.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180509

7

for the Jaszczak phantom were unavailable. This specific

phantom study is a typical cold study, hence only cold

contrast is measured.

Cold contrast (Cc) and bias measurements for the six cold

spheres of the real Jaszczak phantom for the reconstruction

techniques used are presented in figure 8a,b, respectively.
4.2.2. Clinical data
aSRT, FBP, OSEM (10 iterations) reconstructions, as well as

the corresponding attenuation map (CT) and ROIs of the

real clinical cardiac data, acquired from a GE Millennium

VG HawkeyeTM SPECT/CT system, are presented in
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Figure 7. Attenuation map, ROI and reconstructions of a real Jaszczak phantom, cold spheres’ region.
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figure 9. Furthermore, in order to quantify the effect of each

reconstruction technique presented, we have performed

cold contrast analysis and calculations in this myocardial

study. The corresponding results are indicated in figure 10.
5. Discussion
For the simulation studies, in all images presented, it is evident

that all hot circular regions can be clearly identified at all noise
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levels by all reconstruction algorithms. However, the cold

regions reconstructed with FBP are not shown clearly,

especially in the case of NL3 at 45 views. Some streak artefacts

at the edge of the phantom appear in the aSRT reconstructions,

especially at a low number of projection angles (views). These

streak artefacts are due to incomplete data measurement

(angular undersampling [25]) and are closely related to the

backprojection operator (integral over theta). Similar streak

artefacts are present at a low number of projections in all ana-

lytic reconstructions that utilize a backprojection operator, such

as FBP and Natterer’s inversion formula. It is important to note

that the cases of NL3 are unrealistic, especially in 45 views,

corresponding to an extremely low number of 3.333 counts

per projection.

Overall, FBP reconstructions exhibited higher image rough-

ness at all noise levels and all numbers of projections.

Furthermore, the image roughness of aSRT reconstructions is

similar to the image roughness of OSEM50 reconstructions,

for all noise levels. As expected, the noise level in the variations

of OSEM reconstructed images increases as the number of iter-

ations increases. The contrast increases as the number of OSEM

iterations increases, whereas the bias decreases, in both hot and

cold regions. For all reconstruction techniques used and for all

noise levels, the image roughness, represented in the x-axis in

figures 5 and 6, increases as the number of views decreases.

This is expected, due to lower angular sampling.

For the cold regions of the IQ phantom, aSRT provided

images with higher contrast and lower bias than FBP and

OSEM for all iteration updates investigated. Both the cold

region contrast and the cold bias exhibited, as expected,

small variations as a function of the initial noise level of the

sinograms. For the 38 mm cold circular region (S6), the aSRT-

reconstructed images exhibited a cold contrast (Cc) of 0.89,

which was higher than the contrast of all other reconstruction

techniques. For the FBP-reconstructed images, the contrast

was substantially low (0.41) for S6. The OSEM contrast varied

from 0.54 for OSEM10 to 0.79 for OSEM50. Similarly, the

cold bias % of background (bc) value for aSRT was the lowest

of all other techniques studied (10.80%), whereas for FBP was

the highest (59.85%). The OSEM cold bias % of background

values varied from 46.49% for OSEM10 to 20.59% for

OSEM50. Hence, for the cold regions, aSRT provides better

quality images in terms of both contrast and bias.

For the hot regions of the IQ phantom, aSRT provided

images with contrast and bias similar to FBP. However,

those values for FBP are achieved at the expense of
substantially increasing the image roughness. Both the hot

contrast (Ch) and the hot %bias (bh) for aSRT was, in all

cases, between OSEM10 and OSEM20. All hot lesions inves-

tigated demonstrated negative hot bias, i.e. bh , 0. The

contrast, as well as the bias, demonstrated negligible vari-

ations as functions of the sinogram noise level. For the

25.48 mm hot circular lesion (S4), the hot contrast value was

0.84 for aSRT, 0.86 for FBP, and from 0.74 for OSEM10 to

0.97 for OSEM50. In addition, the hot %bias value was

�10:98% for aSRT, �9:17% for FBP, and from �18:83% for

OSEM10 to –1.84% for OSEM50. FBP exhibited similar con-

trast to aSRT, although at the expense of higher levels of

image roughness. It is important to note that the ROI place-

ment for the background affects the image roughness of

aSRT. Selecting a background ROI which includes the central

region of the phantom, as well as areas at the edge of the

object (streaking artefacts) results in an increase in image

roughness for aSRT; see figure 2d. More specifically, the

new image roughness values for NL1 to NL3 were: (i) for

90 views, 13,53%, 18.74% and 40.54%, respectively, and

(ii) for 180 views, 9.43%, 13.31% and 28.87%, respectively.

These values for aSRT image roughness are still lower that

the corresponding ones of FBP. In the cases of FBP and

OSEM, the corresponding values of IR remained unchanged,

as expected. It should be noted that contrast and

bias measurements are not affected by the choice of

background ROI.

For the real Jaszczak phantom study, the FBP-reconstructed

image exhibited substantially higher image roughness (0.96)

than the one reconstructed with aSRT (0.51). It is evident that

for the cold Jaszczak phantom study, the contrast and bias

measured in aSRT reconstructions are superior to the ones in

FBP reconstructions in all cold spheres investigated; see

figure 8a,b, respectively.

For the clinical myocardial 201Tl stress test perfusion

SPECT/CT study, aSRT exhibited a cold contrast (Cc) of

about 44%, FBP of about 38% and OSEM of about 40% (see

figure 10). Therefore, aSRTexhibited cold contrast improvement

of about 14% over FBP and 8% improvement over OSEM.

Hence, it is evident that in cold cardiac regions, aSRT produces

images with higher cold contrast than both FBP and OSEM. It is

important to note that, among the relevant literature of analytic

inversion of the attenuated Radon transform, aSRT was the only

algorithm to be tested with reconstructions of clinical SPECT/

CT data. The improvement of our method over FBP and

OSEM is an indication that aSRT may be valuable in the

imaging of graded structures in vivo (e.g. nucleus and annulus

of spines, mitral valves etc.). Furthermore, we note that for

the clinical studies no artefacts were present, indicating that

some of the simulated cases studied suffered from ‘unrealistic’

high noise and small number of projections (cases chosen to

investigate the limitations of our algorithm).

Overall, the improvement in contrast and bias of the cold

regions of aSRT over OSEM can be explained by recalling that

OSEM exhibits slow convergence in regions of low counts

due to the positivity constraint imposed by the algorithm.
6. Conclusion
aSRT is a novel, fast analytic algorithm capable of reconstructing

attenuation-corrected SPECT/CT images. In the present work,

we have compared aSRT with FBP and OSEM using simulated
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and real phantoms, as well as real clinical data. We have pre-

sented an improved version of the analytic formula of the

IART and have implemented aSRT in Matlab. We have evaluated

the aSRT reconstructions in comparison with FBP and OSEM

reconstructions using contrast, bias and image roughness.

Our tests suggest that aSRT can efficiently produce accurate

attenuation-corrected reconstructions for simulated phantoms

as well as real data. In particular, it appears that aSRT has a con-

siderable advantage in cold regions in comparison with both

FBP and our implementation of OSEM. More specifically, the

aSRT results of the clinical myocardial study are encouraging,

indicating that aSRT could provide useful reconstructions in a

real clinical setting. Further investigation is needed to better

quantify with the help of physicians, the improvement of

aSRT in myocardial imaging. Clinical studies involving myo-

cardial ischaemia are in progress, where the advantage of

aSRT for cold regions should be demonstrated via receiver oper-

ating characteristics curves. Overall, aSRT may provide an

improved alternative to FBP for SPECT reconstruction.
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Appendix A
In order to simplify equation (2.9), we first combine equations

(2.10) and (2.11) and rewrite Lm in the form

(Lm f̂m)(r, u) ¼ 1

2i
e�m̂=2[e�iFH{em̂=2þiFf̂m}þ eiFH{em̂=2�iFf̂m}]:

(A 1)

Using e+iF ¼ cos F+ i sin F, equation (A 1) simplifies as

follows:
(Lm f̂m)(r, u) ¼ 1

2i
e�m̂=2[( cos F� i sin F)H{em̂=2þiFf̂m}þ ( cos Fþ i sin F)H{em̂=2�iFf̂m}]

¼ 1

2i
e�m̂=2[ cos F(H{em̂=2þiFf̂m}þH{em̂=2�iFf̂m})� i sin F(H{em̂=2þiFf̂m}�H{em̂=2�iFf̂m})]

¼ 1

2pi
e�m̂=2 cos F

þ1

�1

em̂=2þiF þ em̂=2�iF

r� r
f̂m dr� i sin F

þ1

�1

em̂=2þiF � em̂=2�iF

r� r
f̂m dr

� �

¼ 1

2pi
e�m̂=2 cos F

þ1

�1

em̂=2(eiF þ e�iF)

r� r
f̂m dr� i sin F

þ1

�1

em̂=2(eiF � e�iF)

r� r
f̂m dr

� �

¼ 1

2pi
e�m̂=2 cos F

þ1

�1

em̂=2(2 cos F)

r� r
f̂m dr� i sin F

þ1

�1

em̂=2(2i sin F)

r� r
f̂m dr

� �

¼ 2

i
e�m̂=2 cos F

1

2p

þ1

�1

em̂=2 cos F
r� r

f̂m dr
� �

þ sin F
1

2p

þ1

�1

em̂=2 sin F
r� r

f̂m dr
� �� �

¼ �2ie�m̂=2[ cos (F)GC þ sin (F)GS],
with G, GC(r, u) and GS(r, u) defined in equations (2.7), (2.8a)

and (2.8b), respectively. Hence, equation (2.9) becomes

equation (2.12).
Appendix B
We assume that a function f : [� 1, 1]� [0, 2p]! R, with

arguments indicated by (r, u), is given for every u at the n
points {ri}

n
1 . We denote the value of f at ri by fi, i.e.

fi(u) ¼ f(ri, u), ri [ [�1, 1], 0 � u , 2p,

i ¼ 1, . . . , n:
(B 1)

Furthermore, we assume that both f (r, u) and its derivative
with respect to r vanish at the endpoints r1 ¼ 21 and rn ¼ 1:

f(�1, u) ¼ f(1, u) ¼ 0, 0 � u , 2p (B 2a)

and

@f
@r

(�1, u) ¼ @f
@r

(1, u) ¼ 0, 0 � u , 2p: (B 2b)

In the interval ri � r � riþ1, for all i ¼ 1, . . ., n 2 1,

we approximate f (r, u) by cubic splines, S(3)
i (r, u), in the

variable r:

f(r, u) � S(3)
i (r, u) ri � r � riþ1, 0 � u , 2p:

This cubic spline interpolates the function f (r, u) at the knots



rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180509

12
{ri}
n
i¼1 in the sense that

S(3)
i (ri, u) ¼ fi(u), i ¼ 1, . . . , n� 1: (B 3)

More specifically,

S(3)
i (r, u) ¼

X3

j¼0

c(j)
i rj ri � r � riþ1, 0 � u , 2p, (B 4)

where the constants {c(j)
i }n

i¼1 for j ¼ 0, . . ., 3 are given by the

following expressions [21]:

c(0)
i ¼

riþ1fi � rifiþ1

Di
þ f 00i

6
�riþ1Di þ

r3
iþ1

Di

� �
þ

f 00iþ1

6
riDi �

r3
i

Di

� �
,

(B 5a)

c(1)
i ¼

fiþ1 � fi
Di

� f 00i
6
�Di þ

3r2
iþ1

Di

� �
þ

f 00iþ1

6
�Di þ

3r2
i

Di

� �
, (B 5b)

c(2)
i ¼

1

2Di
(riþ1f 00i � rif

00
iþ1), (B 5c)

c(3)
i ¼

f 00iþ1 � f 00i
6Di

(B 5d)

and Di ¼ riþ1 � ri, (B 6)

with fi00 denoting the second derivative of f (r, u) with respect

to r evaluated at ri, i.e.

f 00i ¼
@2f(r, u)

@r2

����
r¼ri

, i ¼ 1, . . . , n: (B 7)

Equation (B 4) implies

þriþ1

ri

f(r, u)

r� r
dr �

X3

j¼0

c(j)
i I(j)

i (r), (B 8)

where

I(j)
i (r) ¼

þriþ1

ri

rj

r� r
dr, j ¼ 0, . . . , 3: (B 9)

Straightforward calculations yield the following identities for

the integrals defined in (B 9):

I(0)
i (r) ¼ ln

riþ1 � r

ri � r

����
����, (B 10a)

I(1)
i (r) ¼ Di þ rI(0)

i (r), (B 10b)

I(2)
i (r) ¼ 1

2
(r2

iþ1 � r2
i )þ Dirþ r2I(0)

i (r) (B 10c)

and I(3)
i (r) ¼ 1

3
(r3

iþ1 � r3
i )þ 1

2
(r2

iþ1 � r2
i )rþ Dir

2 þ I(0)
i (r)r3:

(B 10d)

Substituting equations (B 9) and (B 10) in equation (B 8) we

find

þriþ1

ri

f(r, u)

r� r
dr � ai(u)þ bi(u)rþ gi(u)r2 þ

X3

j¼0

c(j)
i rj

0
@

1
AI(0)

i (r),

(B 11)
where

ai(u) ¼ c(1)
i (u)Di þ

1

2
c(2)

i (r2
iþ1 � r2

i )þ 1

3
c(3)

i (r3
iþ1 � r3

i ), (B 12)

bi(u) ¼ (c(2)
i (u)Di þ

1

2
c(3)

i (u)(r2
iþ1 � r2

i )) (B 13)

and gi(u) ¼ c(3)
i (u)Di: (B 14)

Taking into account equations (B 5), the above expressions

simplify as follows:

ai(u) ¼ (fiþ1 � fi)�
1

36
[17r2

iþ1 � 19riþ1ri þ 8r2
i ]f 00i

� 1

36
[4r2

iþ1 � 5riþ1ri � 5r2
i ]f 00iþ1, (B 15)

bi(u) ¼ 1

12
[(5riþ1 � ri)f

00
i � (5ri � riþ1)f 00iþ1] (B 16)

and gi(u) ¼
f 00iþ1 � f 00i

6
: (B 17)

Hence, using the identity

þ1

�1

f(r, u)

r� r
dr ¼

Xn�1

i¼1

þriþ1

ri

f(r, u)

r� r
dr, (B 18)

equation (B 11) impliesþ1

�1

f(r, u)

r� r
dr � A(u)þ B(u)rþ 1

6
(f 00n � f 001 )r2

þ
Xn�2

i¼1

[S(3)
i (r, u)� S(3)

iþ1(r, u)] ln jriþ1 � rj

þ S(3)
n�1(r, u) ln jrn � rj � S(3)

1 (r, u) ln jr1 � rj,
(B 19)

where

A(u) ¼
Xn�1

i¼1

ai(u) and B(u) ¼
Xn�1

i¼1

bi(u): (B 20)

The right-hand-side of equation (B 19) involves the functions

{fi}n
1 , which are known, and the functions {f 00i }n

1 , which

are unknown. If we denote the derivative of the cubic

spline, S(3)
i , by S(2)

i , where the superscript denotes that S(2)
i is

quadratic, then we find

S(2)
i (r, u) ¼ @S(3)

i (r, u)

@r
¼ c(1)

i (u)þ 2c(2)
i (u)rþ 3c(3)

i (u)r2: (B 21)

In order to compute {f 00i }n
1 we follow the procedure of [17],

namely we solve the system of the following n equations

(continuity of the first derivative of the cubic spline):

S(2)
i (riþ1, u) ¼ S(2)

iþ1(riþ1, u), i ¼ 1, . . . , n� 2,

0 � u , 2p (B 22a)

and

S(2)
1 (r1, u) ¼ S(2)

n�1(rn, u) ¼ 0: (B 22b)

The continuity of the spline, namely S(3)
i (riþ1, u) ¼ S(3)

iþ1(riþ1, u)

for i ¼ 1, . . ., n 2 2, and S(3)
1 (r1, u) ¼ S(3)

n�1(rn, u) ¼ 0 (see

equations (B 2a)), implies that the points {ri}
n
1 are removable

logarithmic singularities.

Using equation (B 19) with f(r, u) ¼ m̂(r, u) we can compute

F(r, u).
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