
Electron inelastic mean free paths for carbon nanotubes from optical data
Ioanna Kyriakou,1 Dimitris Emfietzoglou,1,a� Rafael Garcia-Molina,2 Isabel Abril,3 and
Kostas Kostarelos4

1Medical Physics Lab, University of Ioannina Medical School, 451 10 Ioannina, Greece
2Departamento de Física–CIOyN, Universidad de Murcia, Apartado 4021, E-30080 Murcia, Spain
3Departament de Física Aplicada, Universitat d’Alacant, Apartat 99, E-03080 Alacant, Spain
4Nanomedicine Lab, Centre for Drug Delivery Research, School of Pharmacy, University of London,
London WC1N 1AX, United Kingdom

�Received 6 May 2009; accepted 11 June 2009; published online 2 July 2009�

We present a simple model dielectric response function for both bulk and individual carbon
nanotubes based on a parameterization of experimental optical data and analytic dispersion relations
that account for dimensionality and linewidth broadening. The model is used to calculate electron
inelastic mean free paths over a broad energy range of interest to various applications. © 2009
American Institute of Physics. �DOI: 10.1063/1.3167819�

The electron inelastic mean free path �IMFP� is a funda-
mental quantity to the study of various spectroscopic prop-
erties of solids and surfaces.1 The biomedical use of carbon
nanotubes �CNTs� as delivery systems of radionuclides to
targeted cancer cells2,3 or as highly sensitive miniaturized
radiation detectors4 requires that inelastic scattering data for
CNTs over a broad energy range are available. Toward this
aim we report here IMFP calculations for CNTs using the
“optical data” method,1 which offers a practical alternative to
first-principles calculations5,6 for electron energies much
higher than the band gap, where the details of the band struc-
ture are less important. In this method, the key physical
quantity is the energy-loss function �ELF�, Im�−1 /��� ,k��,
which depends on the energy ���� and momentum ��k� de-
pendent �macroscopic� dielectric function ��� ,k�. The ELF
at k�0 �optical limit� is determined from experimental op-
tical data while its extension to k�0 where data are often not
available �or limited� is obtained through theoretical disper-
sion relations.1 By virtue of Bethe’s theory, the method is
most effective above �200 eV where the optical limit of
ELF prevails while its performance at lower energies will
depend on the quality of the dispersion relations used. In
general, results below �50 eV are mostly qualitative. The
method has proven useful for both bulk materials and solid
surfaces.7,8 Moreover, a macroscopic dielectric function can
be suitable even for nanostructures as long as it is fair to
consider their valence electrons as a continuum, that is, when
the plasmon energy is much larger than the band gap energy.9

In the present work, the ELF at k�0 is obtained from
the electron-energy-loss sprectroscopy �EELS� measure-
ments of Kuzuo and co-workers10,11 on bulk samples of mul-
tiwalled CNTs �MWCNTs� �13–34 nm in diameter� and
single-walled CNT �SWCNT� bundles. The Kuzuo data
cover the important valence excitation range from 0 to 50 eV
and, to a good approximation, have been reproduced numer-
ous times both experimentally12–15 and theoretically.16–19 It is
now clear that CNTs larger than �20 nm in diameter, ex-
hibit a well defined bulk plasmon peak at 20–24 eV corre-
sponding to the �+� electrons, and a smaller one at 5–7 eV
due to the � electrons. For extending the Kuzuo data to

higher energy losses �including the K shell� where
condensed-phase effects are less important, we use the Na-
tional Institute of Standards and Technology �NIST� �Ref.
20� values for the photoabsorption coefficient ��� of carbon
using Im�−1 /��	 Im���=c� /� �c is the speed of light�. We
have parameterized the Kuzuo and NIST data by a linear
superposition of Drude-type functions �atomic units are
used�21

Im�− 1/���,k = 0��data = 

i

Ai�i,0����2 − �i,0
2 �2

+ ���i,0�2�−1	�� − �c,i� , �1�

where Ai, �i,0, and �i,0 are the adjustable parameters that
relate to the height, width, and position of the ith peak in the
deconvolution of the experimental spectrum, and 	 is the
step function. For the K shell, the cutoff energy ��c� is set at
285 eV and for the valence shells, at the onset of the EELS
data �2–3 eV�; the exact values are insignificant here. We
have obtained a good representation of the experimental data
�Fig. 1� while satisfying both the KK- and f-sum rules1 to
better than 1%. The Drude ELF �Eq. �1�� guarantees that for
small �c, the f-sum rule is fulfilled for all k independent of
the form of dispersion as long as it is satisfied at k=0. The
f-sum rule violation at finite k by the K shell due to its large
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FIG. 1. �Color online� The parameterization of the Kuzuo �Ref. 11� and
NIST �Ref. 20� data using Eq. �1� �the fit to the MWCNT data of Ref. 10
was of similar quality�.
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�c is of no concern here since the K-shell contribution to the
IMFP is less than 1%–2% in the present energy range.


o extend our study to individual SWCNTs, we make
use of the observation12–14,22–24 that thin MWCNTs with a
diameter smaller than �10 nm exhibit a redshifted ��+��
plasmon peak at 15–17 eV which coincides with Ritchie’s
“surface” plasmon frequency �s=�p /�2 ��p being the bulk
plasmon frequency�. To a first approximation, we can there-
fore model the dielectric response of an individual SWCNT
by means of the surface ELF7,8 Im�−1 / ���� ,k=0�+1��,
where ��� ,k=0� is the bulk dielectric function of Eq. �1�.

Although various sophisticated approaches exist for the
dispersion of bulk and surface excitations in CNT like
systems,25 in the present study we adopt a simple semiempir-
ical approach in the spirit of the optical data method by
taking advantage of the available EELS data at finite k for
bulk SWCNT samples26 and thin bundles of vertically
aligned �VA� SWCNTs.27 The latter system is a reasonable
approximation to individual SWCNTs because it lacks the
typical dielectric screening properties of the bulk, as practi-
cally all the tubes in the bundle are on its surface with none
in its interior.28 For extending the ELF to k�0, we use the
dispersion properties of the main ��+�� plasmon peak be-
cause the � plasmon is generally more sensitive to band
structure and CNT geometry, and therefore its distinct dis-
persion properties are difficult to be incorporated within the
present method. This approximation should suffice for not
too low electron energies where the contribution of the �
+� plasmon is dominant. For bulk CNTs we use

�i�k� = ��i,0
2 + �k + �k2 + k4/4, �2�

where �=�3 /10�p
F and �= �3 /5�
F
2 with 
F being the

Fermi velocity of the electron gas. The plasmon and Fermi
energies deduced from the Kuzuo data are, respectively, 22.6
and 18.9 eV for the MWCNTs �Ref. 11� and 19.9 and 15.8
eV for the SWCNTs.12 Equation �2� combines Ritchie’s lin-
ear term29 for boundary effects with the three-dimensional
electron gas plasmon dispersion, and through the k4 /4 term
approximately accounts for single-particle excitations at high
k where collisions are free-electron like.30 For individual
SWCNTs we use

�i�k� = ��i,0
2 /2 + �p

2�Rk�1/2 + k4/4, �3�

where R is the SWCNT radius �0.75 nm here� and �p is the
value of the bulk SWCNTs �see above�. The k1/2 term in Eq.
�3� follows from approximating the individual tube as a two-
dimensional electron gas system with a nonzero long-
wavelength frequency gap at the surface plasmon value.31

Since the theoretical analysis of plasmon damping �at any
dimension� is too complicated, a purely empirical relation
was deduced from the ELF broadening of VASWCNTs �Ref.
27�

�i�k� = �i,0 + a1k + a2k2, �4�

where a1=a2=0.5 Hartree. It can be seen from Fig. 2 that
the dispersion relations of Eqs. �2�–�4� are adequate for both
bulk and VASWCNTs while having the correct limiting be-
havior at k=0 and k→�.

Having established an analytic form for the ELF over the
�-k plane and assuming that our systems are sufficiently
long along the direction of k, we calculate the IMFP in the
Born approximation by a double quadrature over both � and

k.32 The IMFPs of the bulk samples �Fig. 3� are found to be
overall similar with only a 10%–15% difference at high en-
ergies due to their different optical data. Substantially larger
IMFPs are calculated for individual SWCNTs. This is prima-
rily caused by the different dispersion properties of Eqs. �2�
and �3� and less by the difference between the bulk and sur-
face ELF at k=0. As expected for bulk samples, the TPP-2M
formula33 �with CNT parameters� and the NIST-SRD71 val-
ues for carbon34 �at CNT density� agree with our calculations
at high energies, but differ significantly in the region of the
minimum where the results are more sensitive to the ELF at
k�0. Although we have used experimental data as much as
possible, our calculations at low electron energies �below
�50 eV� are mostly qualitative due to the general shortcom-
ings of the optical data method, e.g., the limitations of the
Born approximation and the lack of band-structure details. A
more accurate dispersion relation for the � plasmon should
also be considered at low electron energies given its in-
creased contribution to the IMFP.

In conclusion, we have presented a simple model dielec-
tric function analytic over the whole �-k plane for different
CNT systems based on the optical data method. The model is
used to calculate electron IMFPs which should be reasonably
accurate above �50 eV for those systems which exhibit
bulklike properties, such as SWCNT bundles and MWCNTs

FIG. 2. �Color online� Comparison of our dispersion relations �Eqs. �2�–�4��
with experimental data for the �+� on bulk SWCNT samples �Ref. 26� and
VASWCNTs �Ref. 27�.

FIG. 3. �Color online� Calculated electron IMFPs for different CNT systems
using Eqs. �1�–�4�. IMFPs using the TPP-2M formula �Ref. 33� and the
NIST SRD71 database �Ref. 34� are also presented.
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with diameters larger than �20 nm. Calculations for indi-
vidual SWCNTs based on the surface-ELF approximation
are also presented but they should be considered only quali-
tative. We expect that due to its simplicity, our model will
facilitate calculations of other inelastic magnitudes for a
broad energy range relevant to various applications where
the type of CNTs examined play an important role.
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