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The energy dissipation pattern of low-energy electron beams (0.3–30 keV) in multi-walled carbon

nanotube (MWCNT) materials is studied by Monte Carlo simulation taking into account

secondary-electron cascade generation. A quasi first-principles discrete-energy-loss model deduced

from a dielectric response function description of electronic excitations in MWCNTs is employed

whereby both single-particle and plasmon excitations are included in a unified and self-consistent

manner. Our simulations provide practical analytical functions for computing depth-dose curves

and charged-carrier generation volumes in MWCNT materials under low-energy electron beam

irradiation. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688307]

Recent work on the irradiation of carbon nanotubes

(CNTs) by energetic charged particles has unambiguously

revealed various beneficial effects towards beam-assisted

engineering of CNT-based nanodevices with the desired

properties.1,2 Scanning electron microscopy (SEM) and

electron-beam lithography (EBL) are increasingly being

used for the characterization and fabrication of CNT-based

field-effect-transistors3–5 and stimulated field-emitters.6–9

Since electron transport plays a fundamental role in the ulti-

mate performance of these techniques, knowledge of the

energy dissipation pattern of low-energy electron beams

(0.3–30 keV) in CNT materials becomes of prime impor-

tance. Monte Carlo (MC) simulations offer a valuable tool

for investigating energy-transfer phenomena in irradiated

solids.10,11 In the present energy range, energy dissipation in

matter by electron beams is almost exclusively due to

inelastic electron-electron scattering. Elastic electron scatter-

ing by target nuclei, well-known to be responsible for irradi-

ation damage via knock-on atomic displacement at high

beam energies (above about 80 keV for CNTs),12,13 results in

significant momentum transfer (or equivalent, angular

deflection) but practically zero energy loss.14

Contrary to the continuous energy-loss models (e.g.,

from stopping power theory) widely used for studying irradi-

ation effects in bulk solids, MC models of materials with re-

stricted dimensions (e.g., CNTs and nanodevices in general)

must account for secondary-electron cascade generation

through the use of discrete (or single-scattering) energy-loss

models.15–17 Such models will also complement current

computational studies of high-energy electron-beam (e.g.,

from a transmission electron microscope, TEM) irradiation

effects in CNTs lying on substrates from backscattered

electrons.18,19

Binary collision theory has been widely used in this con-

text due to its computational convenience, despite its well-

known simplistic description of the materials excitation

properties.20 In the present work, we advance a MC model of

electron-beam energy dissipation in multi-walled carbon

nanotube (MWCNT) materials based on a quasi first-

principles discrete-energy-loss model deduced from a realis-

tic description of the target electronic excitations. This

approach has the advantage that secondary-electron cascade

generation can be explicitly simulated without the need for

an arbitrary separation of plasmon and single-particle losses,

since the complete excitation spectrum of MWCNTs is built-

into the model via the energy (�hx) and momentum (�hk) de-

pendent dielectric response function, eðx; kÞ. Then, under

the constraint of physically motivated sum-rules (which pre-

serve causality), the energy losses in single inelastic colli-

sions can be computed in a self-consistent manner according

to the properties of the so-called energy-loss-function (ELF),

Im½�1=eðx; kÞ�.
Among several approaches21–24 for modeling charged

particle induced electronic excitations in CNTs, the optical-

data method25 is perhaps most convenient for MC simula-

tion26 since it allows important energy-loss magnitudes to be

expressed in useful analytic forms27,28 with direct use of

available experimental data for CNTs.29 Therefore, we here

employ a many-pole plasmon model of electronic excitations

in MWCNTs that permits, within the plane-wave Born

approximation (PWBA), the calculation of differential and

total inelastic electron-electron scattering cross sections

from first-principles.29,30 Model parameters associated with

the energy, damping rate, and strength of the various excita-

tion modes of the target are determined from spectroscopy

data (see Ref. 30 and references therein) under the perfect-

screening and Thomas-Reich-Kuhn sum-rule constraints,

thus ensuring a realistic and self-consistent description of the

electronic excitation properties of MWCNTs over the whole

x–k plane. To go beyond the standard bulk models

of particle–solid interaction or the local dielectric models

often used for nanostructures,31 dimensionality effects area)Electronic mail: demfietz@cc.uoi.gr.
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explicitly considered in the model via the analytic extension

of eðx; kÞ at k 6¼ 0.

The theoretical framework of the PWBA, whereby the

incident and scattered particle is represented by plane waves

while the interaction is treated by first-order perturbation

theory, is particularly convenient since the transition matrix

elements are independent of the projectile, and therefore

they can be represented by a target-material excitation func-

tion such as the ELF used in the present work. However,

computing the electron inelastic mean free path within

PWBA entails a double quadrature of the ELF over the x–k
plane that can be impractical for MC modeling over a wide

energy range. A convenient parameterization of the PWBA

is provided by the Bethe asymptotic expansion.32 Such a

parameterization for the case of CNTs has been presented in

Ref. 33 for both electron and proton projectiles. Along these

lines we express here the electron inelastic cross section per

unit mass or, equivalent, the density (q) normalized inverse

inelastic mean free path, k�1=q, of MWCNT materials as a

function of electron energy, T (in keV), as follows:

k�1

q
¼ const

blnðcTÞ
T

; (1)

where const ¼ 1:63� 107cm2=g and b, c are material excita-

tion parameters defined through integrals of the ELF; specifi-

cally, b is obtained from the x-dependence of the ELF at

k ¼ 0 whereas c also depends upon the properties of the ELF

at k 6¼ 0 (see Ref. 33 for more details). For MWCNTs we

have b ¼ 0:0279 keV and c ¼ 58:8 keV�1. However, the

Bethe asymptotic expansion up to order T�1, as offered by

Eq. (1), cannot account for the so-called inner-shell effects

that, due to their T�2 dependence, become important at

low particle velocities. Thus, Eq. (1) provides a good

representation (to a few %) of the PWBA calculations only

above �500 eV.33 Since inner-shell effects are automatically

included in the PWBA (to all orders in 1=T), we can, in prin-

ciple, improve the performance of Eq. (1) below 0.5 keV by

using further terms in the Bethe asymptotic expansion as, for

example, it is done in the Tanuma-Powell-Penn formula.28

Alternatively, we have chosen here to fit the ratio

k�1
Bethe=k

�1
PWBA, where k�1

Bethe is given by Eq. (1), by the func-

tion JðTÞ ¼ ð1� aTÞ=ðb� cTÞ with a ¼ 35:4 keV�1,

b ¼ �0:7655, and c ¼ 31:7 keV�1. As can be seen from

Fig. 1, multiplication of Eq. (1) by the correction function

JðTÞ results in very good agreement (better than 63%) with

the numerical PWBA results33 down to 50 eV (the present

simulation cut-off).

For the elastic scattering, calculations are based on the

semi-empirical atomic model of Browning34 which employs

a modified form of the screened Rutherford cross section

that approximates analytically basic trends of partial wave

calculations of the Mott elastic scattering cross section.20

The Browning model is particularly convenient for MC sim-

ulation since elastic scattering cross sections can be imple-

mented in a manner similar to the screened Rutherford

model. It can be seen from Fig. 1 that for not too low elec-

tron energies and up to the maximum electron energy of in-

terest here (30 keV), the Browning model compares fairly

well with the corresponding NIST (Ref. 35) values for car-

bon, which are derived from elaborate partial wave

calculations.36

The discrete energy losses in inelastic electron-electron

scattering were determined from the differential inverse

IMFP, dk�1=dx, which in the PWBA reads

dk�1

dx
¼ �h

pa0T

ðkþ

k�

Im � 1

eðx; kÞ

� �
dk

k
(2)

with the limits of integration being k6 ¼ ð
ffiffiffiffiffiffi
2m
p

=�hÞ
ð
ffiffiffi
T
p

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � �hxÞ

p
Þ, where m is the electron mass. Since the

inverse dependence on k is much stronger than the k-depend-

ence of the ELF, the procedure for simulating the discrete

energy losses via Eq. (2) may, to a first approximation, be

simplified by working in the so-called optical approximation,

i.e., by sampling Im½�1=eðx; k ¼ 0Þ�, thus avoiding the k-

integration. We have found that significant improvement can

be achieved if we disperse the ELF using an “effective”

wavenumber (keff ) the magnitude of which is of the same

order as k�. Specifically, by setting keff ¼ 2k� we have con-

firmed that the keff approximation reproduces the energy loss

rate of the PWBA to within 5% over the whole energy range

of interest here. By this approximation we retain (to a good

degree) the correct shape of dk�1=dx while still avoiding

the numerical integration in Eq. (2). The required extension

of the ELF to finite wavenumbers is evaluated from a bulk
planar surface (BPS) model30 which accounts for boundary

effects in the spatial dispersion of MWCNT electronic

excitations.

One of the merits of the present formalism is that both

single-particle and plasmon excitations are considered self-

consistently within one model. Specifically, we allow for the

excitation of plasmons whenever the energy transfer, �hx, is

within Epl 6 HWHM, where Epl ¼ �hxpl and HWHM are,

respectively, the energy and half-width-at-half-maximum of

the pþr plasmon peak. However, plasmons are allowed to

decay to single-particle excitations via the Landau damping

FIG. 1. (Color online) Cross section (per unit mass) for elastic and inelastic

electron scattering in MWCNT materials as a function of electron energy.

The PWBA and NIST results for comparison are from Refs. 33 and 35,

respectively.
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mechanism by giving all their energy to a single target elec-

tron37 whenever the effective wavenumber is above the cut-

off value, kcut � xpl=tF (tF being the Fermi velocity). On the

other hand, energy losses outside the plasmon channel are

assumed to produce single-particle excitations in the form of

either localized electron-hole pairs (for �hx < Epl � HWHM)

that deposit their excitation energy “on the spot,” or ioniza-

tions (for �hx > Epl þ HWHM). In the latter case, secondary

electrons are simulated with kinetic energy equal to the

energy transfer minus the binding energy (B) of the ionized

shell. For the K-shell, we use the K-edge of carbon,

BK ¼ 285 eV, whereas for the valence-shells we use the

optical-data threshold, Bval ¼ 3 eV; the exact values are

inconsequential here. Following K-shell ionization, it is

assumed that an Auger electron is emitted isotropically with

energy TAuger ¼ BK � 2Bval. All secondary electrons are

simulated in the same manner as the primary electrons.

In principle, the ELF can be used to also sample the

inelastic scattering angles through d2k�1=dxdk. However,

since the contribution of inelastic scattering to the angular

deflection of the electron beam is relatively small compared

to elastic scattering, and in order to avoid the formidable

computational task of handling bidimensional tables of ELF,

we adopt the simple Moller expressions sin2hprim ¼ 2Wr=
ð2þ l� lWrÞ and sin2hsec ¼ 2ð1�WrÞ=ð2þ lWrÞ with

hprim and hsec being the scattering angles of the primary and

secondary electrons, respectively, and Wr ¼ �hx=T,

l ¼ T=mc2.

The use of a discrete-energy-loss MC model permits an

event-by-event simulation of the irradiation process, that is,

the sequential simulation of each elastic and inelastic colli-

sion as the beam electrons (and all generations of secondary

electrons) slow down in the irradiated material. The outcome

of an event-by-event simulation is, among other things, a set

of Cartesian coordinates fðxi; yi; ziÞ; i ¼ 1; :::; ng of the

n-number of collisions in a random electron track. In all sim-

ulations carried out here the transport of electrons is stopped

once their energy falls below 50 eV. A low-energy cut-off is

necessary to satisfy the general restriction of the PWBA that

the projectile is fast compared to the target electrons. Results

are average values over 100 000 primary (beam) electrons

to ensure a small statistical uncertainty (generally less

than 1%).

In Fig. 2 we present MC transport simulations of differ-

ent measures of the distances traveled by the electron beam

in MWCNT materials over the 0.3–30 keV energy interval.

The results are density-normalized to facilitate their use for

MWCNT materials of different densities. In the main panel

we present the electron pathlength, absorption depth, and

maximum penetration depths both perpendicular (laterally)

and along (axially) the incident direction. The electron path-

length is defined as the average value of the total distance

traveled (i.e., of the actual tortuous path) by a primary

(beam) electron until its energy falls below the simulation

cut-off. If we designate by ~ri the vectors that connect the

interaction points with Cartesian coordinates ðxi�1; yi�1; zi�1Þ
and ðxi; yi; ziÞ, then the average value of rtotal ¼

Pn
i¼1 j~rij

defines the electron pathlength. For the calculation of the

absorption depth as well as the maximum penetration depths

(axially or laterally) we first identify the incident beam direc-

tion with, say, the z-direction and set the track starting point

at ðx0; y0; z0Þ ¼ ð0; 0; 0Þ. Then, the electron absorption depth

equals the average value of the z-coordinate of the final inter-

action point, zn, (since n designates the last collision) where

the energy of the primary (beam) electron falls below the

simulation cut-off. On the other hand, the maximum

penetration depth along the incident beam direction (i.e.

axially) is determined by the average value of

zmax ¼ Maxfzi; i ¼ 1; :::; ng, where zmax is the interaction

point with the largest z-coordinate. Note that, by definition,

zn is always smaller (or equal) to zmax. In fact, the two may

differ considerably because at low energies and near the end

of the track electrons undergo many large-angle deflections

and will therefore tend to propagate back towards the origin.

The maximum penetration depth perpendicular to the inci-

dent beam direction (i.e., laterally) is determined by the aver-

age value of pmax ¼ Maxfðx2
i þ y2

i Þ
1=2; i ¼ 1; :::; ng, where

pmax is the interaction point with the largest radial distance

from the incident beam direction. Note that rtotal, zn, zmax,

pmax, refer to a single primary (beam) electron track while

their average (�r total, �zn, �zmax, �pmax) is taken over the total

number of beam electrons simulated.

The inset in Fig. 2 depicts the ratio between the lateral

and axial penetration depths,
�pmax

�zmax
, herein referred to as the

lateral-to-axial (LA) ratio, as well as the ratio between the

electron absorption depth and pathlength, �zn

�r total
, the so-called

detour factor.38 Since the electron absorption depth (as

defined above) measures the projection of the pathlength on

the incident beam direction, the detour factor is a convenient

measure of the “diminishing” effect that multiple scattering

has upon the electron beam penetration capacity. As it can

be seen from the inset of Fig. 2, the detour factor, although

increases with beam energy, remains well below unity over

the present energy range, indicating a significant deviation

from a straight-line trajectory. On the other hand, the LA ra-

tio starts from about 1.2 at 300 eV, reaches unity at about

3 keV, and diminishes to 0.87 at 30 keV. As an example, for

FIG. 2. (Color online) Monte Carlo simulations of the density-normalized

pathlength (q�r total), absorption depth (q�zn), axial penetration (q�zmax), and

lateral penetration (q�pmax) of an electron beam in MWCNT materials as a

function of beam energy. The inset depicts the lateral-to-axial (LA) penetra-

tion ratio (pmax

zmax
) and the detour factor ( �zn

�r total
). The lines are to guide the eye.
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a MWCNT material of q ¼ 0:03 g=cm3 (typical CNT forest

density) we can deduce from Fig. 2 that an electron beam of

3 keV will, on average, irradiate 4.44 lm of material in both

the axial and lateral beam directions, whereas for an electron

beam of 30 keV the corresponding irradiation depths are

334 lm (axially) and 334� 0:87 ¼ 291 lm (laterally).

Among other things, these results enable us to predict the

irradiation volume (also called charged-carrier generation

volume) as well as the spatial resolution in low-voltage

SEM.39

MC simulations of the energy dissipation profile (also

called the depth-dose curve) in a MWCNT material includ-

ing secondary-electron cascade generation have been carried

out for several different electron beam energies in the inter-

val 0.3–30 keV. The depth-dose curves are analytically rep-

resented by

dT

dz
¼ fT

R
gðxÞ; (3)

where gðxÞ is the Everhart-Hoff function,40 R is the Gruen

range,39,40 and f is a normalization coefficient the value of

which, although varying with beam energy, is �2 to within a

few % in the present energy range. The variable x in gðxÞ is

the depth z divided by R. The validity of Eq. (3), that is, of

expressing the twice-normalized depth-dose curve,
ðdT=TÞ
ðdz=RÞ, via

the Everhart-Hoff function, gðxÞ, rests on the “high-energy”

approximation that the large-angle scattering probability per

unit fractional energy loss is insensitive to electron energy.40

Using a cubic polynomial approximation for gðxÞ, Eq. (3)

has been applied to electron beam energies above 5 keV.40,41

We here show that the utility of Eq. (3) can be extended to

much lower energies using appropriate parameterizations for

gðxÞ and R below and above 5 keV. Specifically, we approxi-

mate the Everhart-Hoff function by

gðxÞ ¼
Xl

i¼0

aix
i; (4)

with l ¼ 3 for T � 5 keV and l ¼ 5 for T < 5 keV and co-

efficients, respectively, a0 ¼ 0:565183, a1 ¼ 3:33252, a2

¼�11:1593, a3¼8:08361 and a0¼0:752267, a1 ¼9:55142,

a2¼�73:1166, a3¼204:994, a4¼�276:858, a5¼148:602.

For use in Eqs. (3) and (4), we approximate R by the

simulated pathlength (see Fig. 2) which can be analytically

represented (to within 65%) by a Gruen-type formula

R¼42:9 T1:865q�1 for T>5keV and by R¼0:976

ð2:05þ11:3TÞ1:684q�1 for T�5keV, with R in nm, T in keV,

and q in g/cm3. The above parameterization of the Everhart-

Hoff function is valid up to depths z¼0:6 R which corre-

sponds to 90%-99% of the dissipated beam energy in the

material.

In Fig. 3 we present the mass thickness (qz) of MWCNT

materials where 20% (X20), 50% (X50), and 80% (X80) of the

beam energy is dissipated. The agreement between the MC

simulations and the analytical predictions of Eq. (3) is fairly

good over the entire energy interval studied (0.3–30 keV).

As expected, the agreement generally improves with increas-

ing beam energy and energy dissipation fraction. Using the

example of a MWCNT material of q ¼ 0:03 g=cm3, we can

deduce from Eq. (3) that an electron beam of, say, 10 keV,

will dissipate 80% of its energy within 64 lm thickness of

material, 50% within 33.4 lm thickness, and 20% within

14.4 lm thickness. It is also straightforward to determine the

energy dissipation between any depths z1 and z2 in the irradi-

ated material by computing the area under the depth-dose

curve from Eq. (3).

To summarize, we have developed a quasi first-principles

Monte Carlo model of energy dissipation by low-energy elec-

tron beams (0.3–30 keV) in MWCNT materials using a dielec-

tric response function description of the target electronic

excitations. The model allows secondary-electron cascade

generation to be explicitly simulated within a unified model

of single-particle and plasmon excitations. Our results provide

practical analytical functions for computing depth-dose curves

and charged-carrier generation volumes for use in SEM/EBL

irradiation effects studies in MWCNT materials.
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