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Abstract

The electronic stopping of protons in liquid water has been investigated by means of the dielectric function properties. Based on a
modified Drude dielectric model, an accurate analytic parametrization of the two sets of available optical data for liquid water has been
accomplished. The resultant optical loss functions predict an I-value of 80–85 eV. Extension to finite momentum is included by means of
simple dispersion algorithms. The influence of different dielectric function approximations and of the higher-order Z1-corrections to the
stopping power (SP) of liquid water for protons in the 50–1000 keV range is explored. This includes the Bragg peak which, among other
things, is of great interest in radiation dosimetry and in predicting radiation damage. The model calculations are within 10–12% of ICRU
values with the larger deviations being observed below the SP maximum. The higher-order Z1-corrections, associated with the Barkas
and Bloch effects, contribute minimally (<2%) down to the Bragg peak region (�100 keV). At the low end examined (50–100 keV)
the Z4

1-term increases more rapidly than the Z3
1-term and their net contribution increases.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

The electronic stopping of protons in soft biological
matter is of importance in various medical [1] and space
[2] applications where energetic light-ions are involved.
Liquid water represents a standard approximation of soft
tissue because of its high abundance in biological cells
(70–80%). Moreover, its electronic excitation spectrum is
similar to most organic compounds while its dissociation
products include very reactive free-radicals which represent
a ubiquitous mechanism of radiation induced biological
damage [3].
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Knowledge of the electronic stopping power (SP) of
liquid water for protons down to the Bragg peak is of
importance in radiation dosimetry and in predicting radia-
tion damage. Bethe�s theory represents the standard frame-
work for calculating the SP above its maximum [4–6]. At
energies near the Bragg peak, though, Bethe�s SP is less
accurate due to the limitations of the first Born approxima-
tion (proportional to Z2

1) and of the dipole approximation in
the mean excitation and ionization energy; the I-value [7,8].
The latter is the important material-dependent quantity in
Bethe�s SP formula associated with the quantized electronic
structure of the target. In the non-relativistic range, it repre-
sents an important source of uncertainty because it depends
on the absorption spectrum spanning from threshold up to
the X-ray region where experimental information is difficult
to obtain. Furthermore, at the Bragg peak region the dipole
approximation – essentially a high-energy approximation –
is of decreasing validity due to the reduced contribution of
inner-shell electrons. Shell-corrections are meant to correct
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for this deficiency but their theoretical evaluation is difficult
to perform for realistic targets.

Finally, in the Bragg peak the strength of the interaction
cannot be accounted for within first-order perturbation
theory. Higher-order corrections, proportional to Z3

1 and
Z4
1, need to be introduced to account (at least partially)

for the Barkas and Bloch effects, respectively [8]. The above
methodology becomes problematic below the Bragg peak
where the SP becomes proportional to the projectile veloc-
ity; this energy range is not examined here.

A successful methodology for heavy ion stopping
including the above effects is the binary theory of Sigmund
[9]. The potential of this theory to describe light ion stop-
ping has been also shown [10]. An alternative quantal ap-
proach based on the first Born approximation proceeds
by means of the dielectric function for the material [11].
Inner-shell effects associated with Bethe�s shell-corrections
are automatically included in the calculations through the
variation of the dielectric function over the energy–
momentum plane; thus, explicitly accounting for terms
beyond the dipole approximation. Due to its importance,
work on the dielectric function of liquid water with appli-
cation to charged particle transport has been recently re-
vived [12–18]. Extending our earlier work we present here
new SP calculations for protons down to the Bragg peak
in liquid water. The effect of different dielectric function
approximations and of the higher-order Z1-corrections on
proton SP values is examined.
2. Methodology

The calculation of the stopping power of condensed
matter within first-order dielectric theory, SP(1), begins
with the expression [11]:
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1
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where a0 = �h/me2 is the Bohr radius, Z1 is the projectile�s
charge, T = mV2/2 with m the electron rest mass and V

the projectile velocity, e(k,x) is the complex dielectric re-
sponse function and �hx and �hk are the energy and momen-
tum transfer, respectively. For the present energy range,
the value Z1 = 1 for protons is assumed. The Im(�1/e) =
Im(e)/jej2 is the key material property called the loss func-
tion. The ImðeðjÞÞ ¼ eðjÞ2 is associated with the absorption of
a photon inducing the jth electronic transition, whereas a
deviation of jej2 ¼ e21 þ e22 from unity signals the influence
of the condensed phase in particle–matter interaction.
The following approximation has been adopted:
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In Eqs. (2) and (3) ‘‘v’’ denotes valence transitions, ‘‘K’’ de-
notes K-shell ionization, xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pNe2=m

p
with N the elec-

tronic density, Z is the atomic number and df(k,x)/dx is
the atomic generalized-oscillator-strength. In the present
work, the loss function of the valence shells is established
by a semi-empirical procedure which has found much use
[19]. For the valence shells, the two sets of available data
[20,21] for the optical limit of Im(e) of liquid water were
analytically represented by a superposition of normal (for
the continuum) and derivative (for the discrete) Drude
functions appropriately modified to account for multi-shell
electrons:
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For the K-shell, we use photoionization data for oxygen to
describe the atomic optical-oscillator-strength:

df Kð0; xÞ
dð�hxÞ ¼ ð4p2aa20RÞ

�1rK
ph; ð5Þ

where a is the fine structure constant and rK
ph the oxygen�s

K-shell photoionization cross-section. By means of Eq. (3)
eK2 ð0;xÞ is then readily obtained. In the Drude representa-
tion of the optical data, the parameters Aj, Bj and Cj are
associated with the height, position and width, respectively,
of each transition peak in the spectrum. Consistent with
current experimental evidence [22], plasmon excitation is
neglected and only single-electron transitions are consid-
ered. Nevertheless, the use of experimental optical data ac-
counts, by default, for possible collective effects in the
liquid phase. The consistency of the analytic representation
of the optical data was secured by satisfying the f-sum-rule:
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The value of 0.178 in Eq. (6) is known from the literature
[23]. From Eq. (4), the Re(e) may be obtained by Kra-
mers–Kronig analysis, or, because of the form of the Drude
functions, analytically. The following expression is
obtained:
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The extension of the optical loss function (k = 0) to the
momentum space (k > 0) is accomplished by means of a
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dispersion relation. The extended-Drude model and the
d-oscillator models are most appropriate for describing
the dispersion of interband transitions and have, therefore,
been extensively applied to liquid water and other organic
compounds; see [17] and references therein. Recently,
Penn�s statistical model with a single-pole approximation
to Lindhard�s function has been applied to biological
materials and shown to be equivalent to the plasmon-like
d-oscillator dispersion [24]. In the extended-Drude model
of Ritchie and co-workers [25], the binding shell energies
Bj are dispersed in the sense of the impulse approximation:

BjðkÞ ¼ Bjð0Þ þ ð�hkÞ2=2m; ð9Þ
where Bj(0) � Bj, whereas the discrete transitions are
damped but not dispersed using an empirically derived gen-
eralized-oscillator-strength for H2O. In the d-oscillator
model of Ashley [26], the momentum-dependence of the
loss function is given by:
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where a plasmon-like quadratic dispersion formula for
x 0(k) is adopted:

hx0ðkÞ ¼ �hx0ð0Þ þ ð�hkÞ2=2m. ð11Þ

On the other hand, in the d-oscillator model of Liljequist
[27], the optical limit and a delta-like Bethe-ridge are used
avoiding any particular dispersion formula. The momen-
tum-dependence of the loss function is obtained by:
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where a two-mode d-oscillator is used:

F dðx0; k;xÞ ¼ dðx� x0ÞHð�hx0 � QðkÞÞ
þ dð�hx� QðkÞÞHðQðkÞ � �hx0Þ; ð13Þ

where Q(k) = (�hk)2/2m is the free-electron recoil energy. It
may be easily shown that all the above schemes exhibit the
correct asymptotic behavior at k = 0 and k� 0.

At low energies corrections to the first Born approxima-
tion are required. Typically, higher-order corrections pro-
portional to Z3

1, and Z4
1 are introduced to account for the

Barkas and Bloch effects, respectively. In the present work,
we follow Ashley�s [28] second-order Z3

1-correction term for
the Barkas effect:
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where the function L1(x;n) contains the free parameter n
associated with the cut-off distance of glancing collisions.
We examine here two choices of n as discussed in [28].
For the Z4
1-correction term of the Bloch effect we use Bich-

sel�s formula [29]:
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where y = Z1a/b.
In Bethe�s theory, the SP(1) of Eq. (1) is solved analyti-

cally using the f-sum-rule and the dipole approximation.
The end result is the following simple formula:
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The mean excitation and ionization energy of the material
(the I-value) may be expressed in terms of the optical loss
function as follows:
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Note that from the difference of Eq. (16) and the full solu-
tion of Eq. (1) the shell-corrections of Bethe�s SP formula
may be obtained.
3. Results and discussion

In Fig. 1, our optical (k = 0) loss function model is com-
pared against the two available sets of data for liquid
water; the reflectance measurements of [20] and the more
recent Compton scattering data of [21]. Despite its simplic-
ity, the model provides an accurate analytic representation
of the data, especially at the important region around the
20 eV peak where a broad absorption maximum is ob-
served. Interestingly, the two sets of data differ by about
a factor of 1.7 at the peak region. As it has been discussed
in [21] the new data, being closer to that of amorphous ice,
might be closer to reality. Despite the unrealistic asymp-
totic behaviour of the Drude functions the sum-rules were
satisfied to within 1%. Furthermore, our optical loss func-
tions predict an I-value between 80 and 85 eV in agreement
with both the recent experimental value 79.75 + 0.50 eV
[30] and a model prediction 81.8 eV [10], The recommended
ICRU I-value is 75 eV [31].

In Fig. 2(a) and (b), our model loss function is plotted for
different values of thewavenumber k (panel a) and frequency
x (panel b) using the extended-Drude and d-oscillator dis-
persion models. The impulse-approximation used in the
extended-Drude model and the plasmon-like quadratic dis-
persion in the d-oscillator model provide a somewhat similar
dependence of the loss function on momentum. In contrast,
the two-mode d-oscillatormodel, which uses only the optical
limit and a d-like Bethe-ridge, is increasingly inaccurate at
low energy and momentum values.

In Fig. 3, we present calculated SP values using our
two different optical loss functions obtained from the



Fig. 1. The optical loss function of liquid water as obtained by our
empirically-adjusted modified Drude model and compared against the
experimental data; open symbols: the old reflectance measurements of [20];
filled-symbols: the recent Compton scattering measurements of [21].

Fig. 3. The electronic stopping power of liquid water for protons in the
50–1000 keV range. Our calculations include the first Born approximation
and the Born-corrected formulae using our optical-data models (R: the
reflectance-based; IX: the Compton-based) and the extended-Drude
dispersion, Bethe�s formula with I = 75 eV. For comparison also included
are the dielectric calculations of [14] and the ICRU values [31].
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reflectance (R) and Compton scattering (IX) data dispersed
in accordance with the extended-Drude model and cor-
rected for the Barkas and Bloch effects. First Born calcula-
tions (i.e. uncorrected) and results based on Bethe�s SP
formula with I = 75 eV are also presented. For compari-
son, we include the ICRU values [31] and the recent calcu-
lations of Akkerman and Akkerman [14]. The latter uses a
different optical loss function parametrization of the reflec-
tance data and the plasmon-like d-oscillator dispersion.
Differences between the various SP curves increase gradu-
ally below about 500 keV and become largest at the Bragg
peak (�100 keV) and below. The calculations are within
Fig. 2. The loss function of liquid water for: (a) two different values of moment
model derived from the Compton data [21] has been used for all calculations
10–12% from ICRU values. This, however, is about the le-
vel of the uncertainty of the ICRU values at the region of
the maximum. It is of interest to note that (i) our uncor-
rected calculations are slightly closer to ICRU than the cal-
culations including the higher-order Z1-corrections and (ii)
the calculations using the more recent Compton data exhi-
bit a somewhat larger deviation from ICRU than the ones
using the old reflectance data. In agreement with Akker-
man all model calculations fall more sharply below the
um transfer �hk and (b) for various values of energy transfer �hx. Our optical
presented.



Fig. 4. The electronic stopping power of liquid water for protons
calculated by various dispersion models. Our optical model derived from
the Compton data [21] has been used for all the calculations presented.
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maximum than the ICRU values. This is the region, how-
ever, where the validity of the models is questionable and
Lindhard�s theory (or its modifications), where the SP is
proportional to the projectile velocity, should be used.
Though not shown, the use of Lindhard�s impact parame-
ter value in the Z3

1-term provides results that deviate signif-
icantly at the Bragg peak region. Also, it was found that
the use of a simple binary encounter formula (BEA) for
the K-shell, instead of an atomic generalized-oscillator-
strength, would affect the total SP by less than 10%.

In Fig. 4, the influence of the various dispersion algo-
rithms in the SP is presented. The Compton-based optical
loss function has been used for all calculations depicted.
Calculations with the two-mode d-oscillator model have
Fig. 5. The ratio of each Z1-term to the Z1-corrected stopping power.
been performed using both a Rutherford and a BEA
hard-collision component. Both alternatives deviate sub-
stantially at low energies and, therefore, their use should
be restricted to the MeV region. The impulse approxima-
tion and the plasmon-like dispersion differ by about 20%
at the Bragg peak; the latter being about 10% below the
ICRU values [31].

In Fig. 5, the contribution of the various Z1-terms is
evaluated. Despite the rapid increase in magnitude of both
the Barkas (Z3

1) and Bloch (Z4
1) terms below a few hundred

keV, because of their opposite signs their net contribution
to the total SP remains less than 2% down to 80 keV. At
the low energy end examined (50–80 keV) the Bloch term
becomes larger than the Barkas term and, therefore, their
net contribution becomes significant.

4. Conclusion

The energy and momentum dependent dielectric func-
tion of liquid water constructed from optical data and
dispersion algorithms has been used to investigate the elec-
tronic stopping power of protons from the MeV down to
the Bragg peak region. Using a reasonable assumption
about dispersion, calculations are within 10–12% of ICRU
values. Below the Bragg peak maximum (�100 keV) all
model calculations fall more sharply than the ICRU pre-
dictions. Higher-order Z1-corrections appear to contribute
minimally (<2%) down to the Bragg peak. At even lower
energies the Bloch correction (Z4

1-term) increases more
rapidly than the Barkas correction (Z3

1-term) and their
net contribution may become significant.
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