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In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our
Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and
protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical
and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly
influence track-structure characteristics at the nanometer scale, which is the focus of radiation action models. Since the event-
by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk
scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above
developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid
water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering
distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt
electric-fields in microelectronics.

INTRODUCTION

Monte-Carlo (MC) simulation has become an
important tool for studying radiation action in both
living and non-living systems. The reason being that
radiation effects are often associated with func-
tional alterations at the micrometer–nanometer
scale where direct experimental information is diffi-
cult to obtain. For example, stochastic distributions
and clustering properties of single-tracks are best
obtained by computational means. Such knowledge
is important for assessing the quality of the beam
and for analysing the so-called LET-dependence
response of a system (e.g. solid detectors or biologi-
cal cells)(1).
The above information is difficult to obtain by the

general-purpose MC codes (e.g. MCNP, EGS/
BEAM, GEANT, ITS, FLUKA, PENELOPE)
which adopt an effective electron energy cut-off
(>0.1–1 keV) and an artificial transport-step. A
fully microscopic, event-by-event, scheme presents
a challenge in terms of low-energy electron interac-
tion physics, since the details of the electronic struc-
ture of the target become critical at this range(2). In
that respect, it is important to account for distinctive

features of condensed media relative to gases, such
as(3) (1) the long-range polarisation of the material
and screening of the projectile’s field, which leads
to weaker scattering probabilities, especially at
low incident energies; (2) the collective transitions
because of the large electronic density, which results
in stronger absorption probabilities at certain energy
losses and (3) the lower ionisation thresholds
because of quasi-free electron states in the conduc-
tion band and the general shifting of the absorption
spectrum to higher losses, which lead to a higher
ionisation efficiency. Importantly, these effects influ-
ence track-structure characteristics in the nanometer
scale (1–100 nm).
The energy loss mechanisms included in the MC4

version for condensed media may be classified as
follows: (1) incoherent transitions leading to ionisa-
tions in the liquid and electron–hole production in
the solid, (2) single-particle coherent transitions
leading to discrete excitations in the liquid (excitons
in solids are not included) and (3) many-particle
coherent transitions leading to plasmon excitations
in the solid. Although a semi-classical theory may be
used for core-electrons (i.e. K-shell), the use of a
model dielectric function approximation is the
method of choice for the valence-electrons, since it
allows in a semi-empirical and self-consistent way
for the inclusion of condensed-phase effects. It has�Corresponding author: kostas.kostarelos@pharmacy.ac.uk
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been extensively used by the Oak Ridge(4) and
NIST(5) groups, as well as by others(6–9) while the
method of the Barcelona group(10,11) (implemented
in PENELOPE and LEEPS) may be considered as
an equivalent formulation. More recently, the dielec-
tric approximation has been implemented in the
code PARTRAC(12) and the code by Cobut
et al.(13), while our group has provided a detailed
analysis of its application to electron and proton
transport in condensed media(14–19). An ab initio
calculation of the dielectric function has also been
implemented in the Columbia code(20). In the follow-
ing paper, a summary of the dielectric approxima-
tion as used in MC4 for condensed matter is
presented, along with some typical microscopic cal-
culations for electron and protons in silicon (MC4Si)
and liquid water (MC4L).

MATERIALS AND METHODS

The physics

The dielectric theory in particle–solid interaction is
based on the generalisation of the dielectric constant
of a medium, e, to a complex dielectric function,
e(q,E) ¼ e1(q,E)þ ie2(q,E), where E and q are the
energy- and momentum-transfer, respectively, to
the medium. This accounts for the absorption
(E-dependence) and scattering (q-dependence) prop-
erties of the medium to any sufficiently energetic
external probe. In particular, the imaginary part of
the inverse dielectric function

Im
�1

e q;Eð Þ

� �
¼ Im e q;Eð Þ½ �

je q;Eð Þj2
ð1Þ

is the key material property and is called the energy-
loss-function (ELF). The numerator in Equation 1
corresponds to the single-particle spectrum of the
gas phase, similar to the generalised-oscillator-
strength of an atom or molecule. Condensed-phase
effects are reflected in the value of the denominator.
For example, for |e|>1 the long-range polarisation
of the medium by the projectile’s field results in a
screening effect which weakens the strength of the
interaction. This effect results in larger mean-free-
paths in condensed matter compared with the gas-
phase (when scaled to the same density). On the
other hand, when |e|< 1, there is an anti-screening
effect, i.e. the medium strongly interacts with the
particle by a collective (plasmon-like) excitation.
This effect results in strong absorption peaks at
about the free-electron plasmon energy of the mate-
rial. In general, the effect of |e| 6¼ 1 is to wash out the
characteristic single-particle excitation peaks of the
gas phase. At energy transfers, of course, much
above the binding energies of the valence shells
of the material, any intermolecular effects are

practically vanished and the value |e|� 1, character-
istic of the gas phase, is approached. At this range
standard atomic or molecular cross-section models
may be used(21).
The central role of the ELF comes out from the

first-Born-approximation and its expression for the
doubly-differential cross-section in energy- and
momentum-transfer:

d2S T ,q,Eð Þ
dq dE

¼ 1

paoTq
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� �
: ð2Þ

It directly follows from Equation 2 that the most
important transport parameters are associated with
the following integrals of the ELF:

M nð Þ Tð Þ ¼ 1

paoT

Z
EndE

Z
1

q
Im

�1

e q;Eð Þ

� �
dq; ð3Þ

where for n ¼ 0, 1, 2, the inelastic mean-free-path,
the electronic stopping-power and the straggling
parameter, respectively, are obtained.
In MC4, the ELF is determined by a two-step

process: First, we establish an analytic model of the
optical limit of ELF, i.e. at zero momentum-transfer
(q� 0). This is the case of almost zero angular deflec-
tion which occurs at soft (or glancing) collisions. The
model is based on experimental data of the optical
constants, i.e. the refraction index, n, and the extinc-
tion coefficient, k, which relate to the ELF by the
following relationship:

Im
�1

e 0;Eð Þ

� �
¼ 2nk

n2�k2ð Þ2þ 2nkð Þ2
, ð4Þ

where n ¼ n(E) and k ¼ k(E) are available for both
liquid water and silicon (and many other materials).
In practice, the values of the optical constants are
only determined for low and moderate values of E
(from threshold up to a few hundred electronvolts).
For higher energies the ELF may be determined
from:

Im
�1

e 0;Eð Þ

� �
¼ c

m
o

ð5Þ

where c is the velocity of light, o ¼�h/E, and m is the
linear absorption coefficient for the photon (X ray)
field. The analytic representation of the data is
based on a linear combination of modified Drude
functions:

D Eð Þ ¼
X
j

fjgjE

E2
j �E2

� �2

þ gjE
� �2 , ð6Þ

where the Ej, fj and gj are the characteristic ener-
gies, oscillator-strengths and damping coefficients,
respectively. They are all treated as adjustable
model parameters obtained by the fitting which
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should account also for various theoretical con-
straints. The details of this procedure, which is
quite involved, may be found elsewhere(14, 19).
The second step involves the incorporation of the

momentum-transfer dependence of the ELF by
means of a dispersion model:

Im
�1

e q ¼ 0,Eð Þ

� �
dispersion

�! Im
�1

e q>0,Eð Þ

� �
: ð7Þ

This is the case where the particle transfers both
energy and momentum (i.e. is deflected) to the tar-
get; the so-called hard collisions belong to this cate-
gory. In the limit E ¼ q2/2m the interaction becomes
a binary, Rutherford-type, collision and, therefore,
the dispersion model has to satisfy the limit:

Im
q!1

�1

e q,Eð Þ

� �
� d E�q2=2m

� �
: ð8Þ

The use of a Drude optical model is particularly
convenient for this task. In MC4 the q-dependence
is introduced directly into the model parameters:

D q,Eð Þ ¼
X
j

fj qð ÞgjE

E2
j qð Þ�E2

� �2

þ gjE
� �2 , ð9Þ

where

Ej qð Þ ¼ Ej þ q2=2m ð10Þ

and f(q) an empirical dispersion for the oscillator
strength (if available). Equation 10 is the so-called
impulse approximation which directly leads to the
condition of Equation 8. Alternative dispersion
schemes have been examined in detail elsewhere(16).
So far the discussion pertains to both electrons

and ions. Differences between the two arise with
respect to angular deflections (ions do not apprecia-
bly deflect at the present energy range), as well as, to
corrections to the first-Born-approximation at very
low electron energies(18). In principle, the dielectric
theory may be used to model the scattering angle in
inelastic collisions, since there is one-to-one corre-
spondence between q and �. However, given that, in
most cases, inelastic events result in E� 0 and q� 0,
whereas elastic events result in E� 0 and q � 0, it is
computationally advantageous to limit the use of the
dielectric theory to energy-transfers only and model
the scattering angles by simpler schemes. Thus, in
MC4, atomic calculations or experimental datasets
have been used for the angular deflections(18,19).

The simulation

For many applications it is impractical to follow in
full detail electrons above several kilo-electron-volts
(often >10–20 keV) since, owing to the large number
of interactions, computer time increases rapidly with

energy. Therefore, the transport algorithm imple-
mented in MC4 for simulating electron trajectories
uses a hybrid scheme where both a discrete (event-
by-event) and a continuous (step-wise) mode of
energy dissipation is being employed. The discrete
scheme follows the standard procedure where a
series of random numbers determine (1) the path
length between successive collisions (elastic or inel-
astic) based on the total cross-section weighted by
the exponential distribution of a Poisson stochastic
process; (2) the type of collision based on the relative
magnitude of the appropriate partial cross-sections
and (3) the energy transfer and/or scattering angle(s)
of the resultant particles based on the differential
cross-sections. For inelastic events, for water, we
consider five excitation transitions and five ionisa-
tion shells, whereas for silicon we consider plasmon
excitation and the two inner-shells. Auger electrons
out of the K-shell (and L-shell for silicon) are also
accounted for. Electrons are followed down to 1 Ry
(¼13.6 eV) for water and 30 eV for silicon. The
higher cut-off for silicon is because of the plasmon
peak. The adoption of these cut-offs should not
introduce any uncertainties for volumes larger than
a few nanometre; this is acceptable considering other
localisation uncertainties at this scale.
For electrons with energies above 10–20 keV,

MC4 adopts a condensed-history random-walk
scheme. That is, elastic collisions are still individu-
ally simulated (according to their cross-sections),
whereas, energy dissipations by inelastic collisions
in-between elastic events is considered continuous
and equal to the product of the stopping-power
and the chosen path length; DE¼ lelastic� dE/dx.
The energy DE is assumed to be deposited randomly
within the path length lelastic. Although straggling is
neglected in this scheme, the simulation of individual
elastic events will, for the most part, preserve the
stochastics of angular deflection and, consequently,
the spread-out pattern of the track. Based on this
hybrid scheme, MC4 is capable of performing full
slowing-down simulation of electrons of initial
energy as high as 1 MeV. For protons and light
ions (using the Zeff-scaling) most applications con-
sider radial distributions within track-segments.
Thus, although the code extends from 100 down to
�0.3–0.5 MeV amu�1, for the results presented here
it was only necessary to simulate proton energy-loss
within one mean-free-path (secondaries are always
being followed down to cut-off). To obtain reason-
able statistics, simulations have been performed for
10,000 electron histories and 50,000 proton histories.

RESULTS

In Figure 1a and b, the radial distribution of energy
deposition (not dose) by electrons and protons is
depicted for the two materials examined. For

MONTE-CARLO CODE FOR CONDENSED MATTER

493



electrons (Figure 1a) a spherical geometry has been
used, i.e. the radial distance denotes spherical shells
around the point of origin of the primary electron.
The absorbed energy is normalised to the initial
electron energy. The results have been obtained by
following both the primary and secondary electrons
until complete stopping. In contrast, for protons
(Figure 1b) a cylindrical geometry has been used
around the axis of a proton track-segment. The
absorbed energy has been normalised to the proton
energy-loss along the track-segment. Practically,
protons are followed until only their first collision,

whereas secondary electrons until they stop. Both
figures reveal the effect of the strong plasmon excita-
tion which exists in silicon. Since most secondaries
originate with energies up to a few tens of electron
volts where the plasmon cross-section (the L- and
K-shells do not contribute) in silicon is larger by a
factor of 2 (or more) than the total inelastic cross-
section in water, the diffusion of low-energy secon-
daries in silicon is restricted very close to their point
of origin (small mean-free-paths) resulting in the
rapid dissipation of their energy. From Figure 2a
and b, it may be seen that the above effect persists
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Figure 1. Normalised absorbed energy distributions: (a) Spherical distribution around the origin of electron tracks
(normalisation to the incident electron energy); (b) Cylindrical distribution around the axis of proton track-segments

(normalisation to the proton energy-loss).
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Figure 2. Cumulative distributions of absorbed energy: (a) spherical distribution around the origin of electron tracks; (b)
cylindrical distribution around the axis of proton track-segments.
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at all incident energies and, in general, tracks in
silicon have a smaller spread-out pattern. Such
results may also be used in modelling phase trans-
formation and latent track formation in solid
detectors by calculating energy deposition within
sub-micron regions around the track.
An important quantity for various microscopic

calculations is the radial dose distribution. Such
results are depicted in Figure 3a and b for electrons

(spherical geometry) and protons (cylindrical geo-
metry) in the two materials. For example, the
radially-restricted LET, which is an important quan-
tity not easily amenable to an analytic calculation,
may be directly found by such data. As we have
shown elsewhere, fitting formula could be used to
analytically represent the radial distribution of dose
for both types of charged particles. It has been found
that the exact r-dependence for protons is much
more involved than a simple power-like law
(/1/rn), while for both particles the dose decreases
much faster than 1/r2, at least initially.
In Figure 4, as an example of a simple clustering

analysis, we present the probability distribution of
finding two energy deposition events at a certain
distance to each other for electron tracks in liquid
water. Along with a consideration on the structure of
biological targets, such information provides insight
for predicting effect probability. It may be seen, for
example, that in a 500 eV electron track, the proba-
bility distribution peaks at 2 nm, which coincides
exactly with the diameter of the DNA double helix.
The peak broadens as the electron energy increases,
and at a few kilo-electron-volts becomes almost flat
for a substantial spatial range (1–100 nm), which
covers the dimensions of most of the sub-nuclear
cellular structures.
Figure 5 presents the probability distribution

of electron–hole separation distances in silicon
for proton track-segments. Such information is
important in calculating prompt electric fields
around the track, which influence the charge-carrier
recombination process. Direct information on such

(a) (b)

Figure 3. Radial dose profiles: (a) spherical distribution around the origin of electron tracks; (b) cylindrical distribution
around the axis of proton track-segments.

Figure 4. Probability distribution of separation distance of
two energy deposition events within an electron track in

liquid water.
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effects is difficult to obtain experimentally and,
therefore, such simulation results are particularly
relevant.
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