For reprint orders, please contact:
reprints@futuremedicine.com

Liposome—nanoparticle hybrids for
multimodal diagnostic and i
therapeutic applications ,’|

Wafd T Al-Jamal &
Kostas Kostarelos

TAuthor for correspondence
Nanomedicine Laboratory,
Centre for Drug Delivery
Research, The School of
Pharmacy, University of
London, 29-39 Brunswick
Square, London

WCIN 1AX, UK

Tel.: +44 207 753 5861;
Fax: +44 207 753 5942;
E-mail: kostas.kostarelos@
pharmacy.ac.uk

Keywords: double liposomes,
liposome, polystyrene
nanospheres, quantum dot,
silica, superparamagnetic iron
oxides, vesosomes

REVIEW

@?@
3
b

Liposomes have a decade-long clinical presence as nanoscale delivery systems of
encapsulated anthracycline molecules. However, their use as delivery systems of
nanoparticles is still in the preclinical development stages. Liposome—nanoparticle hybrid
constructs present great opportunities in terms of nanoscale delivery system engineering
for combinatory therapeutic-imaging modalities. Moreover, many novel materials are
being developed in nanotechnology laboratories that often require methodologies to
enhance their compatibility with the biological milieu in vitro and in vivo. Liposomes are
structurally suitable to make nanoparticles biocompatible and offer a clinically proven,
versatile platform for the further enhancement of pharmacological efficacy. Small iron
oxide nanoparticles, quantum dots, liposomes, silica and polystyrene nanoparticles have
been incorporated into liposomes for a variety of different applications. In this review, all
such liposome-nanoparticle hybrid systems are described, both in terms of their
structural characteristics and the potential they offer as diagnostic and therapeutic

uture
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multimodality agents.

Liposomes are the most clinically established
nanometer-scale systems that are used to deliver
cytotoxic and antifungal drugs, genes and vac-
cines, and are also being used as imaging agents [1).
Liposomes consist of a single or multiple concen-
tric lipid bilayers (called lamellae) that encapsulate
an aqueous compartment. Biocompatibility, bio-
degradability, reduced toxicity and capacity for
size and surface manipulations comprise the out-
standing profile that liposomes offer compared
with other delivery systems. Hydrophilic poly-
mers, such as polyethylene glycol (PEG), can be
attached onto the liposome surface to sterically
stabilize and increase liposome blood circulation
residence time; targeting ligands (e.g., antibodies
or peptides) can also be attached to increase lipo-
some specificity toward target tissues [2]. Lipo-
somes constitute the most established nanoscale
delivery system already in clinical use for over a
decade and provide a leading example of how
nanomedicines can be developed and have a valu-
able clinical history. Some of the commercially
available liposome-based products in clinical use
currently are listed in Table 1 and many more are
still undergoing clinical trials (2-7].

Most clinically used liposomes encapsulate a
hydrophilic therapeutic agent (e.g., anthracy-
clines) in their aqueous compartment, which is
surrounded by a lipid bilayer that may contain
polymers or targeting ligands on its surface. The
pharmacokinetics of such systems have been
studied thoroughly [g]. Drug encapsulation into
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liposome carriers can alter a drug’s in vivo phar-
macokinetic and pharmacodynamic profile,
leading to an increase in the therapeutic index,
reduction in tissue toxicity and other side
effects [9-12], an increase in drug stability [13,14]
or the emergence of a sustained-release profile
formulation [7,15,16]. New-generation systems
include liposomes responsive to external or envi-
ronmental stimuli (e.g., pH, temperature or
enzymes) that trigger drug release at specific and
controlled sites [17].

The versatility of the liposomal structure lies in
its capacity to cargo drug molecules and biological
macromolecules that are hydrophilic (therefore
entrapped in the liposome inner aqueous core) or
hydrophobic (therefore incorporated within the
lipid bilayer). In recent years, with the advent of
nanotechnology, there has been a dramatic
increase in the development of novel particulate
systems that are of nanoscale dimensions.
Nanometer-sized particles, such as superparamag-
netic iron oxides (SPIOs) and semiconducting
nanocrystals (quantum dots [QDs]), possess novel
magnetic and optical properties that can be used
as imaging probes. However, their hydrophobicity
or poor colloidal stability at physiological condi-
tions frequently renders them inappropriate for
clinical use. Our proposal is to take advantage of
the much more developed and sophisticated lipo-
some technology as a platform for the delivery of
novel nanoparticles. Encapsulation of these nano-
particles within liposomes can lead to enhanced
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Table 1. Commercially available liposomal preparations.

Category Trade name

Cytotoxic Doxil®/Caelyx®

DaunoXome®

Myocet®

DepoCyt®

Fungicide AmBisome®

Vaccine Epaxal®
AVAXIM®
Bio-Hep-B ®

Inflexal®V Berna

FluMist®

Newcastle
disease vaccine
(vet)

Avian Rheovirus
vaccine (vet)

Others Visudyne®

Manufacturer

Ortho Biotech (Doxil)

Schering Plough
(Caelyx)

Gilead

Zeneus Pharma

Enzon
Pharmaceuticals

Gilead

Berna Biotech

Sanofi Pasteur MSD

Biotechnology
General

Berna Biotech AG

Medimmune
Vaccines
Schering-Plough
Animal Health
Corporation
Schering-Plough
Animal Health
Corporation

Novartis

Liposome system details

80-100-nm sterically stabilized
liposomes (HSPC:chol:DSPE-
PEG2000) suspension encapsulating
doxorubicin

Small rigid (DSPC:chol) liposomes
encapsulating daunorubicin

Liposomal formulation (EPC:chol)
encapsulating doxorubicin
citrate complex

Cytarabine liposome injection
(DOPC:chol:DPPG multivesicular
liposome)

Small negatively charged liposomal
suspension (HSPC:chol:DSPG)
encapsulating amphotericin B

Formalin-inactivated hepatitis A virus
attached to phospholipid vesicles
together with influenza virus
hemagglutinin

Liposome suspension contains
inactivated hepatitis A virus

HBs antigen vaccine

Purified influenza hemagglutinin
glycoprotein and neuraminidase
inserted into the liposomal
membrane (lecithin)

Nasal liposomal preparation contains
weakened live influenza viruses
Novasome is nonphospholipid
liposomes containing killed Newcastle
disease virus

Nonphospholipid vesicle containing
killed avian rheovirus

Liposomal suspension encapsulating
verteporfin drug

Therapeutic target

Kaposi sarcoma,
ovarian cancer

Kaposi sarcoma

Combinational therapy with
cyclophosphamide for
advanced stage or
metastatic breast cancer

Lymphomatous meningitis
(cancer of the lymph system
that has spread to the brain)

Systemic fungal infections
(visceral leishmaniasis)

Hepatitis A virus infections

Hepatitis A virus infections
Hepatitis B virus infections

Influenza prophylaxis

Influenza prophylaxis

Newcastle disease (a highly
infectious viral disease of
domestic and wild birds)

Passive protection of
chickens against rheovirus
infections

Photodynamic therapy for
macular degeneration
(ophthalmic preparation)

"The dates of clinical approval for some of the products listed: Doxil®/Caelyx®: 1995 (USA), 1996 (Europe); DaunoXome®: 1996 (USA & Europe);
Myocet®: 2005 (Europe & Canada); DepoCyt®: 1999 (USA); AmBisome®: 1990 (Europe), 1997 (USA); Epaxal®: 1994 (Switzerland);

Inflexal®V Berna: 1997 (USA); FluMist®: 2003 (USA); Avian Rheovirus vaccine: 2006 (USA); Visudyne®: 2000 (USA).

Chol: Cholesterol; DOPC: Dioleoyl phosphatidylcholine; DPPG: Dipalmitoylphosphatidylglycerol; DSPE: Distearoylphosphatidylethanolamine;
EPC: Egg phosphatidylcholine; HBs: Hepatitis B surface; HSPC: Hydrogenated soy phosphatidylcholine; PEG: Polyethylene glycol.

nanoparticle hydrophilicity, stability in plasma
and an overall improvement in their biocompati-
bility. Furthermore, by taking advantage of the
capability offered by
hydrophilic and hydrophobic moieties, combina-
tory therapy/imaging modalities can be achieved
by incorporating therapeutics and diagnostic
agents in a single liposome-delivery system.
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In this review, we highlight various types of
nanometer-sized particles that have been
encapsulated within phospholipid bilayers and
their applications in the biomedical field, par-
ticularly in designing novel biosensor devices.
Following is a more detailed description of
most such types of liposome—nanoparticle
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Liposome-SPIO particle hybrids

The unique properties of magnetic particles,
such as gadolinium, magnetite and maghemite
(y-Fe,03), when placed in magnetic fields,
have attracted great attention with regards to
their potential for magnetic resonance imag-
ing (MRI). Their applications in the biomedi-
cal field, including noninvasive imaging, drug
targeting, gene therapy, tissue engineering
and, more recently, as heat mediators for can-
cer treatments, have been investigated. They
have been studied thoroughly with attempts to
improve the resulting MRI resolution and
reduce toxicity. Most commonly, they have
been embedded in stabilizing polymers, such
as dextran or PEG to improve their biocom-
patibility and reduce their aggregation in
physiological environments.

SPIO nanoparticles have been encapsulated
within the phospholipid vesicles (Figure 1) using
techniques, such as reverse phase evaporation
[18-21], extrusion [22], freeze-thawing [21,23] or
sonication [24,25]. Liposomes containing nano-
meter-sized superparamagnetic particles have
been prepared to improve SPIO biocompati-
bility as the lipid bilayer is biocompatible with
the biological membrane and enhances SPIO
utilization by the cells [22]. Lipid bilayer coat-
ing of the magnetic nanoparticles preserved the
magnetic characteristics of SPIOs, reduced

SPIO aggregation in the blood stream,
reduced the cytotoxicity of the free iron oxide
particles [221 and, most importantly, provided a
more effective MRI contrast agent. Encapsula-
tion of SPIOs within liposomes (known as
magnetoliposomes) provides a promising
delivery system with combinatory capacity,
whereby therapeutic agents can also be incor-
porated either in the aqueous core or in the
lipid bilayer. Drug-loaded magnetoliposomes
provide a specific targeting and therapeutic
delivery system by applying magnetic forces.
They achieve a high drug concentration at the
specific site without associated toxicity to
neighboring tissues [19,23,26]. Also, the magne-
toliposome’s surface can be modified chemi-
cally by specific targeting ligands [19,20,27-30] Or
PEG-grafted lipids [22,31] to reduce the non-
specific adsorption and avoid macrophage
uptake. Functionalized PEG ligands have also
been incorporated to improve the blood
circulation time and target recognition [21,32].

Hyperthermia is a promising tool for cancer
therapy as it has fewer side effects than chemo-
therapy or radiotherapy. Hyperthermia
involves raising the temperature of the tissue to
42-44°C, which causes physical damage.
Many procedures have been followed to induce
hyperthermia but they all cause damage to the
normal tissues as well as to the tumor [33].

Figure 1. Diagram showing the incorporation of superparamagnetic iron oxide

nanoparticles within a liposome bilayer (left) or a liposome aqueous core (right).

SPIOs

Encapsulation of hydrophobic SPIOs in
a liposome bilayer

PEG: Polyethylene glycol; SPIO: Superparamagnetic iron oxide particle.

Y Target ligand (e.g., antibody, protein)

§ Hydrophilic polymer (e.g., PEG)

Targeting ligand coupled to the
terminus of the surface-grafted polymer

Encapsulation of hydrophilic SPIOs
in a liposome aqueous core
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Figure 2. Incorporation of hydrophobic quantum dot nanoparticles within a liposome bilayer (left) and
electrostatic complexation of negatively charged hydrophilic quantum dots with commercially available

cationic liposomes (right).
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Magnetoliposomes can act as heat mediators
within the tumor when an alternating mag-
netic field is applied, resulting in antitumor
activity without heating of the surrounding
healthy tissues [2527-29,34]. Magnetoliposomes
induce selective hyperthermia if they accumu-
late only within the tumor. Such accumulation
has been achieved by direct intratumoral injec-
tion [24,25,33,34] or by antibody conjugation for
inaccessible tumors [27,28,30], which makes
them more convenient for intravenous admin-
istration. Interestingly, cationic magnetolipo-
somes (CMLs) have shown  higher
accumulation and affinity for the cell mem-
brane after intratumoral injection than neutral
liposomes [29,35. Thus, CMLs induced effi-
cient and selective intracellular hyperthermia
in different tumor models without raising the
whole body temperature, resulting in tumor
necrosis and complete tumor regression after
multiple exposures to an alternating magnetic
field [25,29,34]. Furthermore, CMLs have poten-
tial applications in gene delivery as their posi-
tive charge can condense negatively charged
DNA, which will facilitate cell association and
transfection [36,37].

In addition to their antitumor activity,
magnetoliposomes can be developed as trig-
gerable systems since magnetically induced

Nanomedicine (2007) 2(1)

increases in local temperature can induce drug
release  from thermosensitive liposomes
[18,38,39] Or, more interestingly, may activate an
encapsulated prodrug molecule prior to its
release [40]. More complex fullerene—liposome
hybrid nanoparticles and magneto-fuller-
ene—liposomes have been constructed where
fullerenes incorporated into the phosphatidyl-
choline liposome bilayer, which, on near-infra-
red (NIR) laser pulse, can trigger drug release
from such nanocarriers [41]. Magneto-
liposomes, directed by a magnetic field to the
tumor site, can be used for targeting, imaging,
therapeutic hyperthermia, gene transfection,
prodrug activation and controlled drug release
1421, all of which provide multiple options for
cancer therapy.

Liposome-QD hybrids

Semiconductor nanocrystals, known as QDs,
are fluorescent nanoparticles of 1-10 nm in
diameter [43-45] that offer distinct spectrofluor-
ometric advantages over traditional fluorescent
organic molecules. QDs exhibit fluorescence
characteristics that are 10-20-times brighter
than conventional dyes, greater photostability,
broad excitation wavelength range, size-tunea-
ble spectrum and narrow and symmetric emis-
sion spectrum, ranging from 400 to 2000 nm,

fsg

future science group




fsg

Liposome—nanoparticle hybrids for multimodal diagnostic and therapeutic applications - REVIEW

future science group

depending on their size and chemical compo-
sition. Owing to these photophysical charac-
teristics they are being explored as potential
imaging agents primarily in fluorescence-
based diagnostic applications [45-47]. Recent
reports have shown that QDs can also be
linked to SPI1O nanoparticles to develop a dual
modality contrast agent for cell tracking
invivo via MRI and optical imaging [48,49].
Samia and colleagues and others have reported
using QDs in photodynamic therapy (PDT)
[50-52], since QD emission wavelength can
excite a photosensitiser and QDs alone also
have the potential to produce the reactive sin-
glet oxygen, which can be wused as a
cytotoxic agent against tumor cells [s0].

QDs are prepared originally in organic sol-
vents [53], therefore their hydrophobic shells
compromise their water solubility and conse-
quently their compatibility with the biological
milieu. In addition, their hydrophobic surface
results in an unfavorable toxicity profile, intro-
ducing serious limitations in potential bio-
medical and clinical applications of QDs.
Many strategies are being developed to over-
come this limitation. The most succsessful

approach has been to functionalize QDs with
polar moieties and ligands with specific recep-
tor recognition signals (e.g., peptides and mon-
oclonal antibodies or their fragments) [44,54-56].
However, this surface modification leads to
decreases in QD fluorescence intensity and
photostability [57-59]. Preformed liposomes of
cationic surface character have been electro-
statically complexed with functionalized QDs
(Figure 2) to enhance the cellular binding and
internalization of QDs for cell labeling and
tracking purposes [s0-62]. However, these stud-
ies simply mixed commercially available, lipo-
some-based transfection agents with QDs in
order to translocate enough QD particles intra-
cellularly to achieve efficient levels of mamma-
lian cell fluorescent labeling. More recently,
Feng and colleagues have reported the encap-
sulation of organic CdSe QDs within PEG-
conjugated phosphatidylcholine  liposomes
(Figure 2). Gopalakrishnan and colleagues have
reported the incorporation of hydrophobic
QDs within fusogenic liposome bilayers that
were able to translocate and stain the plasma
membrane of cell cultures upon fusion [63].
Incorporation of the organic QDs within

Figure 3. Multicompartment liposome encapsulating SUVs within an outer bilayer
membrane where different therapeutic molecules (cocktail therapies) can be loaded

into SUVs.

SUV: Small unilamellar vesicle.

Suv

Lipid bilayer
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phospholipid bilayers renders QDs compatible
with the aqueous environment and allows fluo-
rescent labeling of the lipid bilayers for in vivo
and in vitro imaging.

In an alternative approach, ultrasmall,
uncapped QDs have been prepared using uni-
lamellar phosphatidylcholine vesicles and electro-
poration. Schelly and colleagues have synthesised
PbS [641 and AgBr subnanometer crystals [65] by
encapsulating the metal ions within unilamellar
liposomes and dispersing anionic ions in the sur-
rounding aqueous phase. The application of high
voltage induced the formation of reversible pores
within the membrane, followed by adsorption of
QD monomers on the external surface of the
liposomes. With time, self-aggregation took place,
resulting in crystals less than 10 A in diameter.

Liposomes-in-liposomes

Doxil® (Ortho Biotech Products, NJ, USA),
Caelyx® (Schering-Plough, NJ, USA) and
Myocet® (Zeneus Pharma, Oxford, UK) are
nanometer-sized liposome systems (encapsulat-
ing doxorubicin in their aqueous core) that have
been used in cancer clinics for over a decade.
Administration of combination chemotherapy
treatment regimens using a single delivery system
is thought to significantly enhance therapeutic
efficacy [e6-68]. Therefore, the engineering of new
types of multicompartment liposomes is needed
to allow adoption of such novel modalities in a
single liposome carrier system [e8] (Figure 3).

Multivesicular systems were first described in
1982 [69], prepared by the double emulsification
technique. Cytarabine-containing multivesicu-
lar liposomes in the micrometer scale (average
diameter 6-30 um) have been introduced to the
market for cancer therapy (DepoCyt®, Enzon
Pharmaceuticals, NJ, USA) (Table 1). These are
large clusters of smaller lipid bilayers seemingly
‘glued’ to each other by triolein-rich hydropho-
bic regions. Multivesicular structures consisting
of lipid bilayers encapsulating intact liposomes
of smaller mean diameters (multicompartment
liposome [MCL]) have been further developed
by various laboratories [70], however, the mini-
mum average diameter described for any MCL
system is in the range of a few micrometers [7,71].
This inhibits the use of multivesicular systems
for systemic indications, such as cancer, whereby
blood circulation of the delivery systems is
required. Micrometer-sized multivesicular sys-
tems have been reported recently as oral (for hor-
mones, proteins and vaccine) [13,14,72] and local
(intratumoral and intramuscular) [1516] drug-
delivery systems, providing a sustained drug-
release profile, inner liposome protection and a
higher drug-encapsulation efficiency.

An alternative MCL system, called vesosome,
has been developed by Zasadzinski and coworkers
using the self-assembly properties between strepta-
vidin-coated cochleate cylinders [14,71-75] or etha-
nol interdigitated phospholipid bilayer sheets (73]
and biotin-coated smaller liposomes. Such

Figure 4. Mechanism of interaction between polystyrene nanospheres and SUVs.

A

Polystyrene

/T_ipid monolayer-covered

polystyrene nanosphere first
formed

Lipid bilayer deposition

@%

Polystyrene
nanospheres

SUVs nanosphere-SUV
interaction

Lipid bilayer-covered
polystyrene nanosphere

(A) A lipid monolayer-covered nanosphere can be formed if the lipid and nanosphere are similarly charged. If a neutral lipid is used, a lipid
bilayer can be adsorbed on the lipid monolayer-covered nanosphere by further lipid deposition. (B) A lipid bilayer is formed on the surface
of an oppositely charged nanosphere.

SUV: Small unilamellar vesicle.
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micrometer-sized vesosome systems were reported
recently as vaccine-delivery systems following topi-
cal (skin) immunization [76]. We have constructed
a novel MCL system of nanometer dimensions
(200 nm average diameter) recently that can
potentially be a tool for systemic administration of
combinatory therapeutic/imaging modalities [77).

Liposome-polystyrene
nanosphere hybrids
Adsorption of a lipid bilayer around the surface of
polystyrene nanospheres [78-82] leads to the forma-
tion of hybrid systems consisting of nanoparticles
within liposomes. The mechanism of interaction
between liposome vesicles and the solid polysty-
rene particles is not yet well understood. Different
lipids and types of nanoparticles have been studied
and lipid deposition at the solid surface has been
shown to depend on the lipid concentration, the
surface charge and the hydrophilic/hydrophobic
nature of the solid nanoparticles (Figure 4) [78,79,82].
Positively charged synthetic dioctadecyldimeth-
ylammonium bromide (DODAB) amphiphiles
formed bilayers and had a high adsorption affinity
for the negatively charged polystyrene nanosphere
surface owing to electrostatic attraction [rs]. How-
ever, negatively charged liposomes formed a lipid
monolayer on the surface of sulphated polystyrene
nanospheres with their polar heads directed

towards the aqueous phase [79]. Unstable adsorp-
tion of neutral liposomes occurred on charged
polystyrene nanosphere surfaces and depends on
the hydrophobic attractions between the phos-
pholipid bilayer(s) and the monolayer-covered
nanospheres [82]. The self-assembled lipid on solid
particles combines the intrinsic properties of both
the solid core and the surface bilayer, which can be
used as a model of the cell membrane. As such, it
can act as a host for transmembrane proteins or
receptors (s3] and be of benefit in designing
biosensors for optical or electrical detection [s4,85).

Liposome-silica nanoparticle hybrids

Formation of a solid particle-supported bilayer
has also been described by deposition of small
unilmellar vesicles (SUVs), composed of either
synthetic amphiphiles or natural phospholipids
onto hydrophilic silica nanospheres [se-gs]. Dep-
osition is followed by vesicle distortion and rup-
ture to form a continuous fluid bilayer
membrane (Figure 5) [82,86-88]. The bilayer adsorp-
tion is as a result of electrostatic attractions
between the silica surface and the vesicle polar
groups. The adsorption stability of neutral phos-
pholipid bilayer on a silica surface depends on
the H-bridges formed between the deprotonated
silanol groups (Si-OH) and the phosphate
groups (O=P-) of the phospholipids. Therefore,

Figure 5. (A) The chemical composition of a silica nanoparticle and (B) the mechanism of interaction
between silica nanoparticles and SUVs.

Silica

Lipid bilayer-coated
silica nanoparticles

SUVs

Silica nanoparticles Silica—SUV electrostatic interaction

SUV: Small unilamellar vesicle.
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Liposome—nanoparticle hybrids for multimodal diagnostic and therapeutic applications - REVIEW

adsorption of the lipid bilayer on the solid silica
nanoparticle depends on the buffer used, the
amphiphile’s polar headgroup and the physical
state of the bilayer [s6,87].

Liposome vesicles composed of the synthetic
DODAB amphiphile demonstrated a high affinity
for silica surface. By contrast, negatively charged
liposomes composed of dihexadecylphosphate
(DHP) amphiphile did not form a continuous
layer on the hydrophilic silica, presumably owing to
electrostatic repulsive forces. However, neutral
phospholipid bilayer deposition can be driven by
stabilizing the H-bridges between the interacting
particles [86,87]. These liposome-silica nanoparti-
cle hybrid systems can be used in designing biosen-
sors whereby the physical (e.g., semiconductors)
characteristics of silica can be matched with the
biocompatibility and  pharmaceutical  and
pharmacodynamicproperties of liposomes [89,90].

Future perspective

Several liposomal products are licensed for clinical
use in cancer therapy and for vaccination. Encapsu-
lation of amphotericin B and anthracyline cyto-
toxic drugs into liposome carriers significantly
increased the drug therapeutic index and reduced
associated cytotoxicity. Most importantly, they
have established clinically nanoscale liposome
delivery systems. One future direction in liposome
research will be in combination with other nano-
particulate systems for the construction of multiple
modality systems. In the diagnostic field, bilayer-
coated nanoparticles have already been described
for the design of multifunctional biosensors. These
types of biosensors can increase the detection sensi-
tivity and save time and effort, as protein receptors
can be anchored into lipid membranes to detect
the presence of several antigens and antibodies

Executive summary

» Liposomes are the most clinically established nanomedicines today, with a
decade-long clinical history as nanoscale delivery systems of anticancer
drug molecules.

< Intensive research in nanotechnology has led to the development of many
types of nanoparticles not compatible with the biological milieu.

» Liposome-nanoparticle hybrid constructs improve the biocompatibility of
novel nanoparticles.

» Liposome-nanoparticle hybrids are structurally diverse nanosystems
offering a wide variety of opportunities for engineering to achieve specific
biological functions (e.g., tissue targeting and triggerable release).

« Liposome-nanoparticle hybrids constitute candidates for clinically viable
and easily translational combinatory therapeutic—diagnostic modalities.
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present in biological fluids. Combinatory imag-
ing—therapeutic applications will include lipo-
some-SPIO hybrid nanoparticles that have been
shown to be nontoxic and highly stable, offering
multimodal capacities. Within the next few years,
we expect the development of liposomal SPIO
products encapsulating different drug molecules
for cancer therapy. Another hybrid system at ear-
lier development stages is based on QD-liposome
hybrid nanoparticles. We speculate that incorpora-
tion of QDs with the liposomal structure can dra-
matically improve QDs biocompatibility under
physiological conditions and can help bring QD
technologies to the clinic faster by reducing QD
dose and their associated toxicity. Furthermore,
liposomes that are combined with NIR nano-
particles, which can be imaged within the NIR
light ‘transparency window’ deeper within human
tissue, can have a tremendous impact in imaging
and therapeutic combined modality agents.

Conclusion

In this review, we have shown that liposomes,
apart from being clinically used delivery systems
of anticancer agents and vaccines, can also be con-
sidered as carriers for different types of nanoparti-
cles. The variety of novel, usually biologically
incompatible, nanoparticles developed as a result
of advances in nanotechnology represents a rich
source of materials that liposomes can transform
into clinically relevant diagnostic or therapeutic
agents. Different strategies to achieve encapsula-
tion of solid or semi-solid nanoparticles within
liposomes have been reported. All such strategies
offer improvements in the nanoparticle aqueous
solubilization and offer a viable platform (the
liposome surface) for further bioconjugation.
Moreover, liposome—nanoparticle hybrids can
increase blood circulation times on systemic
administration and thus improve accumulation
within sites of leaky vasculature (tumor or inflam-
mation) and offer opportunities for the develop-
ment of combinatory imaging and therapeutic
modalities at those sites.
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