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This technical note introduces adiabatic dynamic causal modelling, a method for inferring slow changes in bio-
physical parameters that control fluctuations of fast neuronal states. The application domain we have in mind
is inferring slow changes in variables (e.g., extracellular ion concentrations or synaptic efficacy) that underlie
phase transitions in brain activity (e.g., paroxysmal seizure activity). The scheme is efficient and yet retains a
biophysical interpretation, in virtue of being based on established neural mass models that are equipped with a
slow dynamic on the parameters (such as synaptic rate constants or effective connectivity). In brief, we use an adi-
abatic approximation to summarise fast fluctuations in hidden neuronal states (and their expression in sensors) in
terms of their second order statistics; namely, their complex cross spectra. This allows one to specify and compare
models of slowly changing parameters (using Bayesian model reduction) that generate a sequence of empirical
cross spectra of electrophysiological recordings. Crucially, we use the slow fluctuations in the spectral power of
neuronal activity as empirical priors on changes in synaptic parameters. This introduces a circular causality, in
which synaptic parameters underwrite fast neuronal activity that, in turn, induces activity-dependent plasticity
in synaptic parameters. In this foundational paper, we describe the underlying model, establish its face validity
using simulations and provide an illustrative application to a chemoconvulsant animal model of seizure activity.

1. Introduction

This paper introduces a class of dynamic causal model (DCM)
that can be used for characterising slow fluctuations in biophysical
parameters that might underlie phase transitions in the brain. This
method is based on a separation of temporal scales (Jirsa et al., 1994;
Papadopoulou et al., 2017; Rosch et al., 2018a; Rosch et al., 2018b;
Rosch et al., 2018¢; Blenkinsop et al., 2012; Jirsa et al., 2014; Steyn-
Ross and Steyn-Ross, 2010; Nevado-Holgado et al., 2012) where fast
neuronal fluctuations are generated by slow fluctuations in synap-
tic parameters and other neurophysiological parameters (e.g., extra-
cellular potassium). DCM then allows one to specify different hy-
potheses about causal relations between slow biological mechanisms
(Papadopoulou et al., 2015) and select the most likely model that ex-
plains phase transitions in electrophysiological data. The innovation of
the DCM introduced here is that the separation of temporal scales is used
to introduce a circular causality in which synaptic parameters shape
fast neuronal activity, while frequency specific neuronal activity induces
plasticity or changes in synaptic parameters. In other words, fast, (spec-
tral) neuronal dynamics are modulated on a slow timescale by drifts

in synaptic parameters, while the spectral characteristics of fast neu-
ronal activity causes slow changes in the parameters. In this paper, we
illustrate how this circular causality and implicit separation of tempo-
ral scales leads to the spontaneous onset of phase transitions in brain
activity and crucially, how this formulation of (patho)physiology can
be used as the basis of a relatively straightforward hierarchical DCM,
which we refer to as an adiabatic (or A)-DCM. In brief, the mapping
from synaptic parameters to fast — within epoch — neuronal activity
uses a conventional DCM for cross spectral density (CSD). In A-DCM,
slow — between epoch — changes in spectral density are then used as
an empirical prior on synaptic parameters to model activity-dependent
plasticity.

The motivation for developing A-DCM was to provide people with
a relatively straightforward procedure that enables them to evaluate
hypotheses about the underlying causes of phase transitions in neu-
ronal activity, in terms of model evidence. For instance, the circu-
lar causality between slow parameters and spectral responses of neu-
ronal oscillations could be useful for understanding the relationship be-
tween depth of anaesthesia (induced with gradual drug injections such
as Propofol to modulate the frequency contents of electrophysiological
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recordings) and slow dynamics of synaptic efficacy of neuronal popu-
lations (Purdon et al., 2013; Hashemi and Hutt, 2016). Adiabatic DCM
could be useful for investigating how the slow evolution of ion/synaptic
mechanisms engenders brain state transitions, e.g., awake to asleep
(Muheim et al., 2019) or pathological states, e.g. seizures (Grenier et al.,
2003). Exemplar questions we envisage being addressed using A-DCM
include: (i) what sorts of slow biological mechanisms might account
for the decline of alpha band power as a marker of progression in
Alzheimer’s disease? (Li et al., 2020); (ii) what are the links between
induced paroxysmal epileptic transitions (3 to 8 Hz) and pathologi-
cal evolution of potassium level or synaptic transmission mechanisms?
(Moody Jr et al., 1974; Du et al., 2016); (iii) what is the role of changes
in synaptic efficacy in inhibitory populations and the emergence of high
beta activity, as hallmarks of pathophysiology in Parkinson’s disease
(McCarthy et al., 2011)? We do not address these long-standing ques-
tions here. Instead, through a worked example of A-DCM we show how
one can (i) establish causal links between biological parameters and
spectral responses in generative models of neuroimaging data; (ii) eval-
uate model evidence and infer parameters from empirical data and; (iii)
compare different hypotheses (through Bayesian model reduction and
comparison) about how the data were generated.

With regards to extant procedures, A-DCM complements previous
approaches to fast-slow modelling of phase transitions (Steyn-Ross and
Steyn-Ross, 2010; Coombes and Bressloff, 2005; Baier et al., 2012;
Wendling et al., 2016; Schiff, 2012). Conventionally, multiscale models
feature fast states that constitute neuronal dynamics, which are (pre-
dominantly) regulated by the dynamics of some slow states, such as
ion concentrations and synaptic efficacy. The prominent application of
multiscale models is to understand the taxonomy and phenomenology
of phase transitions in the neuroimaging data, in particular electrophys-
iological recordings, as reviewed in (Friston, 2014). Some recent (se-
lective) examples of these models are: (i) a neuronal-glial interaction
model that emulates epileptic seizures and cortical spreading depression
through slow dynamics of potassium and sodium (Wei et al., 2014); (ii)
a neural mass model (NMM) augmented with slow dynamics for synap-
tic efficacy—e.g. as a model of synaptic plasticity (Fung and Robin-
son, 2014)—to replicate burst suppression in anaesthesia (Liley and
Walsh, 2013; Liu and Ching, 2017); (iii) a slow-fast mesoscale model
of epileptic seizures that captures the slow dynamics of firing thresh-
olds—to replicate spike rate adaptation—with a NMM (Jafarian et al.,
2019b); and (iv) a phenomenological model of epileptic seizures, known
as an Epileptor, where the aetiology of epileptic seizures is explained via
the evolution of a slow state (Jirsa et al., 2014; El Houssaini et al., 2020).
The novelty of adiabatic DCM, as a forward model, is the ability to link
slow biological mechanisms with the spectral contents of fast neuronal
dynamics. In short, A-DCM was designed to characterise (paroxysmal)
transitions formally, by coupling modulatory slow dynamics of ion cur-
rent/synaptic efficacy and induced spectral responses in mesoscale dy-
namics.

In terms of model estimation, due to the complexities of multiscale
models, inferring the parameters of these models—and comparing mod-
els given real electrophysiological recordings—typically incurs a high
computational burden (Hashemi et al., 2020; Jafarian et al., 2019b;
Jafarian et al., 2019a). In this paper, we show that A-DCM provides a
computationally efficient method for parameter estimation—and more
importantly calculating model evidence—that can be used to investigate
the aetiology of phase transitions from electrophysiological recordings.
In particular, model inversion in A-DCM is motivated by Synergetic the-
ory and the Adiabatic approximation (Basar et al., 2012; Haken, 1977;
Jirsa and Haken, 1997). This formulation assumes that for each value
of slowly varying parameters, the fast-neuronal states attain nonequi-
librium steady-state that is expressed in terms of spectral contents. This
assumption leads to a relativity straightforward approach to inferring
model parameters from empirical data. Furthermore, A-DCM enables
one to compare different models or hypotheses about underlying gener-
ators of paroxysmal transitions.
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In summary, we have introduced two novel contributions in this pa-
per. First, in contrast to the existing slow-fast formulation of phase tran-
sitions in the brain (e.g. Epileptor (Jirsa et al., 2014) or slow-fast neural
mass model (Jafarian et al., 2019b)), we introduced the modulation of
parameters with respect to the frequency contents of fast membrane
potentials (both in terms of forward simulations of the model and the
estimation procedure). We therefore provided a platform that could be
useful for clinical research (in particular, regarding the circular rela-
tionship between spectral responses in electrophysiological recordings
and their associated underlying biological causes. Second, by employing
the spectral contents of the data as a prior when inverting/estimating a
neuronal model, we provided an explicit model of circular causality. In
addition, we established a procedure for data driven model construction
between slow states’ dynamics and fast neuronal responses, which has
not been considered previously (e.g., we employed a polynomial linear
model to relate slow states and the evolution of the spectral contents of
the data).

This paper comprises four sections. In the next section, we review
the theoretical tenets of A-DCM. In section three, we first provide an
illustrative example of the basic ideas in terms of a forward simulation
of the generative model. This example illustrates how changes in model
parameters can induce transitions in brain activity and accompanying
spectral responses. We then use these forward simulations to create a
hierarchical generative model (Friston et al., 2016) that can be inferred
from empirical data. The third section presents some applications of A-
DCM—using Bayesian model reduction—to characterise the underlying
causes of seizures. In this section, we generated synthetic data that un-
dergoes transition into and out of seizures. Then, by performing a sec-
ond level analysis, under a hierarchical model of slow changes in DCM
parameters (Friston et al., 2015), we show how one can answer some
fundamental questions concerning the genesis of epileptic seizures. This
section can be read as establishing the face validity of the procedure.
In the fourth section, we apply model inversion to an empirical electro-
physiological recordings from an animal model of epilepsy to provide an
illustrative (worked) example of this type of analysis. We conclude with
a discussion of the limitations and potential applications of adiabatic
DCM.

2. Theory

This section provides a brief review of dynamic causal modelling.
Then, we build on this to introduce the A-DCM methodology that uses
a hierarchical model, in which slow changes in DCM parameters at the
second level are coupled to spectral responses at the first.

2.1. Dynamic causal modelling

Dynamical causal modelling is the estimation of biologically in-
formed models of neuroimaging data using variational Bayesian meth-
ods (Friston et al., 2007; Friston et al., 2003; Friston et al., 2008;
Friston et al., 2019). DCM was pioneered nearly 20 years ago and since
been used to infer the biological mechanisms generating neuroimag-
ing data (Jafarian et al., 2019c; Friston, 2011; Friston et al., 2011;
Penny etal., 2011; van Wijk et al., 2018). In DCM, a posterior probability
density over model parameters, as well as the evidence for a model (for
any given empirical data), are inferred through optimisation of an objec-
tive function called the variational free energy. This objective is known
as an evidence lower bound (ELBO) in machine learning and provides a
computationally efficient approximation to the (log) model evidence or
marginal likelihood. This optimisation is performed under the Laplace
approximation (i.e., probability densities are approximated using Gaus-
sian distributions) (Friston et al., 2007; Friston et al., 2008; Beal, 2003;
Zeidman et al., 2019a) using a gradient ascent on variational free en-
ergy. This is known as Variational Laplace. In DCM, the model evidence
associated with different hypotheses (i.e., models) of the same data are
compared using Bayesian model selection and comparison to identify
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Table 1
Parameters of the neuronal model (see also Fig. 2).
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Description

Parameterisation Prior

Postsynaptic rate constant

exp(6,) - T,T = [256,128,16,32]  p(6,) = N(0,1/16)

g Intrinsic connectivity between populations i and k in each region  exp(d,) - g p@,) = N(0,1/16)
G Self-inhibitory connection exp(d,) - G p6,) = N(0,1/16)
Table 2
Glossary of variables and expressions.
Variable Description
u Exogenous input
x The i-th (neuronal) state in region j; e.g., mean depolarisation of a neuronal population
o(x) The neuronal firing rate - a sigmoid squashing function of depolarisation
L Lead field vector mapping from (neuronal) states to measured (electrophysiological) responses

8,(), 8,(), 8, (@)

Spectral density of (neuronal) state fluctuations, observation error and ensuing measurement, respectively

o.f System Jacobian or derivative of system flow with respect to (neuronal) states

k(1) = FT[K(w)]
function
K(w) = FT[k(®)]
This is the Fourier transform of the kernel

First order kernel mapping from inputs to responses; c.f., an impulse response function of time. This is the Fourier transform of the transfer

Transfer function of frequency, modulating the power of endogenous neuronal fluctuations to produce a (cross spectral density) response.

the best explanation for the data at hand (Kass and Raftery, 1995).
A recently developed Bayesian model reduction technique, which we
will leverage here, opens a new avenue for rapidly comparing the evi-
dence for models specified in terms of their priors (Friston et al., 2018;
Friston and Penny, 2011; Friston et al., 2016; Zeidman et al., 2019b). A
greedy (i.e., depth-first) search is performed in the BMR method that it-
eratively switches off mixtures of parameters (Friston et al., 2018). Each
mixture is removed when switching it off causes no reduction in free en-
ergy (i.e., when the parameters were only contributing to complexity,
without increasing accuracy). This search is highly efficient and takes
seconds on a standard desktop computer. For more details, please see
(Friston et al., 2018; Jafarian et al., 2019c).

2.2. Adiabatic dynamic causal model (A-DCM)

2.2.1. Theoretical foundation

The starting point for A-DCM is a separation of temporal scales
into fast (neuronal) and slow fluctuations (Basar et al., 2012). Our
main assumption here is that the brain can be treated as an excitable
medium, where neuronal dynamics operate around a sequence of fixed
points, where oscillatory dynamics result from the (neuronal) filtering
of endogenous random fluctuations (Moran et al., 2007; Moran et al.,
2013; Friston et al., 2012). The fixed points then change slowly to
generate changes in cross spectral density over time (please also see
Appendix C for further discussion) (Table 1 and 2).

The slow and fast scale separation, which is known as an adiabatic
approximation (Haken, 1977), leads naturally to a mean field approx-
imation when building generative models for data analysis. Under a
mean field approximation, the posterior over unknown variables is ap-
proximated with the product of (marginal) posteriors (Friston et al.,
2007). In this instance, the adiabatic approximation enables us to es-
timate slowly changing synaptic (i.e. connectivity) parameters and hy-
perparameters, under the assumption that they are conditionally inde-
pendent. The mean field approximation requires us to write down the
equations of motion for the parameters or connection strengths. Effec-
tively, this entails specifying a model of synaptic plasticity. We therefore
consider a paroxysmal (e.g., epileptogenic) perturbation or phase tran-
sition that is mediated by neuronal plasticity (e.g., spike rate adaptation
or associative plasticity) to reset the fast-neuronal dynamics — and their
expression in spectral responses (please also see Appendix C for further
discussion).

In A-DCM, neuronal dynamics are generated in terms of their second
order (statistical) moments, via complex cross spectra (Friston et al.,

2012). These then generate observed cross spectra in the sensor domain
(via a standard electromagnetic forward model). In detail, let us write
the temporal dynamics of neuronal states, x, driven by random fluctua-
tions, u, for a given set of parameters 6 as follows:

x=f(x,0)+u (€))

In Eq. 1, the cross spectral content of the random fluctuation,
g,(w,0) = FT(E[u(t),u(t — 7)]), is modelled as (structured) pink noise
(Friston et al., 2012; Moran et al., 2007; Moran et al., 2013). The as-
sumption underlying DCM for CSD is that random fluctuations induce
oscillations around some fixed point (Da Silva et al., 1974; Friston et al.,
2012). In other words, using DCM for CSD, we treat electrophysiolog-
ical recording, y, as a neuronally filtered version of endogenous noise
(Da Silva et al., 1974). Under a fixed point assumption, the neuronal
dynamics can be well approximated by the first order linearised neu-
ronal model x = (V. f)x + u (where V. denotes the Jacobian of neu-
ronal states at x*) (David et al., 2006). The linearised equation of neu-
ronal states is used to obtain a semi analytic expression of the trans-
fer function (i.e., first order Volterra kernel) with an impulse response
k(z,0) = exp(r. V, f(x,0)). The spectral response of the transfer function
can in turn be expressed as follows:

K(w, 0) = FT (expz. V. f(x,0)) o))

The neuronal source response, g,(w), of the noise driven model is
given by:

8x(®) = K(, 0). g,(0, 0).K(®, 0)" + g,(w,6) 3

In Eq. 3, g,(w, 9) represents random fluctuations due to observation
noise (associated with individual channels and common to all channels)
(Moran et al., 2007). The spectral response in sensor space is calculated
through the forward electromagnetic model, denoted by L. M(w), as
follows:

g,(@) = L.M(w).g,(@).M" (w).LT+ € @

In Eq. 4, g,(w) are the cross spectral data and € is a random effect
due to computing the cross spectra from finite timeseries, which can
be inferred using the variational Bayes approach in DCM (please see
Appendix A for explanation of this final term in Eq. 4).

In A-DCM, slow dynamics of parameters, 6,, have the following gen-
eral form, which models activity-dependent plasticity at time ¢, via a
dependency on neuronal activity:

0, =, (g(w. 1) + ¢ ®
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(a) A-DCM simulation

Faf ,"‘ M "a A ]
Yo e \Q. npwendal )
X
Slow states
(ion currents, m

synaptic plasticity) ¥
A
‘\ Fast states

(membrane potential
\‘\,.. and firing rate)

I S

Neurolmage 238 (2021) 118243

(b) Data driven A-DCM
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Fig. 1. This figure illustrates forward simulation and estimation procedures in adiabatic DCM. a) Forward simulation procedure for a neuronal model that is equipped
with slow states. Here, the value of parameters 0 at each point in time induces neuronal responses x. The ensuing induced spectral neuronal responses modulate the
value of parameters and so on. In effect, a form of circular casualty inherently emerges in A-DCM that accounts for the mechanistic coupling between slow variations of
physiological parameters and fast neuronal responses. The four neuronal populations that constitute the canonical microcircuit are 1=spiny stellate cells, 2=superficial
pyramidal cells, 3=inhibitory interneurons and 4=deep pyramidal cells (see Fig. 2 for details) and 6,, .., 6, (e.g., self-inhibition) represent parameters of each neuronal
populations. Hierarchical inversion in A-DCM rests upon a separation of temporal scales. In this approach, electrophysiological data is divided into segments. Then,
hierarchical Bayesian model inversion—using DCM for CSD and PEB—is used to infer time-dependent parameters that are constrained at the second level by the
spectral properties of the data. The ensuing estimated parameters are then modelled using a linear in parameters (f;, i = 1, .., P) polynomial (of order P) GLM, with
a design matrix that summarises the spectral features of the data to ensures a coupling between time-dependent parameters and spectral responses in the data. Note
that one could use a similar approach to characterise the relation between the slow dynamics of parameters and spectral response of neuronal populations. However,

the main aim of A-DCM is to provide a model between physiological parameters and the measurable data at hand.

The term g(w,?) in Eq. 5 denotes the spectral activity of neuronal
dynamics at epoch t. Here, ¢ is an operator (parametrised by unknown
parameters p) that generates the parameter at time t from the spectral
activity of neuronal dynamics, and ¢, is additive random effect. One
example of the operator S could be the integral of power spectral den-
sity (PSD) (Using Parseval’s theorem, the variance (average power) of a
process can be calculated by integrating the power spectrum over all fre-
quencies: var(x) = [ PSD(x)d f (Von Storch and Zwiers, 2001)), which
engenders a simple form of synaptic plasticity (please see Fig. 1a). An-
other example of operator S can be concatenated power spectral density
of electrophysiological data, e.g., local field potential (LFP) over differ-
ent epochs. Such definitions for the S operator can be useful when one
wants to test for a causal relation between synaptic parameters and fre-
quency specific neuronal activity (i.e., investigating circular causality).
In what follows, we will use a general linear model (GLM) based upon
regressors (in a design matrix) that encode the expression of particular
frequencies. This means that the parameters p correspond to the param-
eters of a GLM (e.g., regression coefficients). Note that the adiabatic
approximation allows us to express the slow dynamics as a mapping
from the time-dependent spectral density to the parameters (please see
Fig. 1b).

In A-DCM, the neural mass model is only used to evaluate the spectral
response to some endogenous neuronal fluctuations u(f) that are them-
selves, parameterised. This enables us to specify a generative model of
slow fluctuations in observable (complex cross) spectral density, purely
in terms of parametric dynamics, while — at the same time — absorbing
a chosen neural mass model into the resulting adiabatic DCM.

2.2.2. Practical implementation

For people familiar with DCM, we employ a standard DCM for cross
spectral density (Litvak et al., 2011; Friston et al., 2012) and turn it into
a hierarchical state space model by adding dynamics to the parameters.
The inversion of this model allows us to estimate the connectivity that
best explains empirical cross spectra and the trajectories or dynamical
architecture controlling the expression of different synaptic parameters.

Practically, we first divide data into epochs (that may overlap)
(please see Fig. 1b). We then use the separation of temporal scales to
model slow changes in the parameters from epoch to epoch within a hi-
erarchical or parametric empirical Bayes model (Friston et al., 2015;
Friston et al., 2016). In detail, the posteriors over parameters from
each epoch are passed to the second level PEB analysis, and slow drifts
in the parameters are captured using a general linear model (GLM)
(see Papadopoulou et al., 2015). Crucially, the explanatory variables
in the GLM comprise the spectral density of neuronal activity in each
epoch. This underwrites the circular causality between frequency spe-
cific changes in fast, parameter-dependent neuronal responses and the
slow, activity-dependent neuronal plasticity. In the examples below, we
use the empirical spectra as explanatory variables in the GLM - af-
ter some suitable dimension reduction and transformation (Chen et al.,
2008; Gavish and Donoho, 2014). This means the empirical spectra are
used twice. First, the cross spectrum of each epoch is used as the data
feature to fit the parameters of an epoch-specific DCM. Second, between-
epoch changes in spectral activity are used to provide empirical priors
over changes in these parameters. This dual use of the spectral data is li-
censed by the separation of temporal scales upon which this DCM rests.
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In other words, A-DCM leverages information in the spectral content of
each epoch and in spectral changes over epochs.

The reason that this (adiabatic) DCM is efficient is that using a gen-
erative model of cross spectra converts a neural state-space model into
an instantaneous mapping between the parameters of the model and
the expected second order responses over time; namely, the complex
cross spectra. The only assumption behind this adiabatic approximation
is that the spectral summary of dynamics is sufficient to inform slow
changes in parameters. This is a key part of the adiabatic DCM described
here: conditioning the parameters of neuronal density dynamics (here,
spectral density) means that we can model activity-dependent changes
in connectivity and other slowly varying factors that, in turn, shape fast
neuronal responses. This means that one can specify an adiabatic DCM to
model slow dynamics such as spike rate adaptation, short-term plasticity
or, indeed, the target of this work; trajectories in parameter space that
engender paroxysmal transitions in neuronal dynamics, e.g., epilepsy.
The basic DCM for CSD using this work has been described in many pre-
vious applications e.g., (Papadopoulou et al., 2017; Rosch et al., 2018a;
Rosch et al., 2018b). The key thing that we bring to the table is equip-
ping the model with a second level that is constrained by empirical data
features at a slower timescale. In addition, we establish polynomial GLM
to model the relationship between slow parameters and spectral con-
tents in data.

To establish the face validity of this kind of model, we will refer
to specific empirical data in which seizures were induced chemically.
These data and the ensuing seizure activity and now summarised briefly.

2.3. Chemoconvulsant animal model of seizures

Animal experiments were conducted in accordance with the United
Kingdom Animal (Scientific Procedures) Act 1986, and approved by the
Home Office (license PPL70-13691). Sprague-Dawely rats (8-12 weeks
old, 280-330 g; Charles River, UK) were used in this study. All ani-
mal experiments were conducted in accordance with the United King-
dom Animal (Scientific Procedures) Act 1986, and approved by the local
ethics committee (University College London). Animals were housed on
12 h/12 h dark/light cycle, and food and water were given ad libitum.
Animals were group housed and allowed to acclimatise to the new en-
vironment for at least 1 week before surgery, and were housed individ-
ually after surgery. Rats were anaesthetised using isoflurane (2%) and
head-fixed in a stereotaxic frame (Kopf, USA). A small hole was drilled
through the skull above the right primary visual cortex (coordinates: 3
mm lateral and 7 mm posterior of bregma and a cannula inserted (Plas-
tics1, USA). During the same surgery, an ECoG transmitter [A3028E-
AA, Open Source Instruments] was implanted subcutaneously with a
recording electrode wire positioned in the visual cortex. A reference
electrode was placed in the contralateral frontoparietal cortex. Animals
were single housed in Faraday cages for telemetric ECoG recordings.
7-10 days post-surgery, rats were briefly anaesthetised and 300-400nl
of 10mM Picrotoxin administered to layer 5 visual cortex, via the pre-
implanted cannula. Immediately after injection rats were removed from
the stereotaxic frame and replaced in telemetry. Within a few minutes
post-injection small amplitude spikes appeared in the ECoG traces, these
evolved over the next 5-10 minutes into large amplitude regular (~1Hz)
spikes or poly-spikes. A cyclical pattern of seizures (~53s in duration)
and inter-ictal activity was observed for about 2-3 hours before fading
away and a resumption of normal brain activity.

3. Validation analyses using simulated data

This paper demonstrates the basic phenomenology that A-DCM is
capable of explaining; namely, phase transitions in electrophysiological
data. In this section, we will use synthetic data. In subsequent sections,
we apply the same methodology to empirical data taken from the mouse
model of seizures above, to illustrate the sort of analyses one can per-
form.
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To illustrate A-DCM, we use the canonical microcircuit (CMC)
(Bastos et al., 2012; Friston et al., 2019) as a model of electrical ac-
tivity of a typical cortical column (see Fig. 2 for details), This model
has been found to be useful for a range of applications in computa-
tional neuroscience, including: predictive coding (Bastos et al., 2012),
modelling evoked brain responses (Auksztulewicz and Friston, 2015;
Jafarian et al., 2020; Friston et al., 2019) and cross spectral responses
(Rosch et al., 2018b; Rosch et al., 2018c) to name a few. The CMC can
replicate fast gamma activity of the superficial layers as well as the slow
(beta) activity in deep layers in the cortex (Bastos et al., 2012). The CMC
comprises four neuronal populations, namely superficial pyramidal cells
(layer I of the cortex), excitatory populations (spiny cells in layer IV of
the cortex), deep pyramidal cells (layer V of the cortex) and interneu-
ron inhibitory cells. Each population in the CMC receives a firing rate
from inter regional and distal neuronal populations, weighted by intrin-
sic and extrinsic effective connectively, respectively. Each population
converts summed input firing rates to a postsynaptic synaptic response
(through convolution of the firing rate and a synaptic impulse response
model). The ensuing postsynaptic response generated by each neuronal
population is then transformed to mean firing rates (through sigmoid
transformation), which is then communicated to other populations via
intrinsic and extrinsic efferents. Electrophysiological recordings are gen-
erated by the CMC as (mainly) the activity of superficial pyramidal cells
plus weighted sum (inferred from data) of the activity of excitatory and
deep pyramidal populations.

3.1. Face validity: simulation of beta burst synchronization

3.1.1. Part A: forward simulation of beta bursts

In this section, we validate the basic idea of A-DCM - that a recipro-
cal coupling between fast neuronal activity and slow drifts in synaptic
parameters (e.g., extracellular concentrations or synaptic efficacy) in-
duces phase transitions. This validation rests upon integrating (or solv-
ing) coupled differential equations at fast and slow timescales to illus-
trate that when parameters pass from one regime of parameter space to
another, there is a qualitative change in the spectral activity at the fast
timescale (Papadopoulou et al., 2015).

In this simulation, we illustrate the effect of modulating the self-
inhibition of deep and inhibitory cells using the integral of the power
spectral density (variance of the signal in the time domain) of their
postsynaptic potentials. This can be regarded as a simple model
of activity-dependent synaptic plasticity (Fung and Robinson, 2014;
Fritschy, 2008). This model was motivated by the fact that there is a
relationship between the energy content of neuronal activity and ion
dynamics. For example, the activity level of neuronal activity declines
after seizures (known as post ictal depression), which is related to the
pathological evolution of ion currents (Panayiotopoulos, 2010). Another
motivation includes the relationship between energy metabolism due to
neuronal activity (caused by ion dynamics) and their level of demand
for energy as observed in haemodynamic responses (Rosa et al., 2011;
Carmichael et al., 2017).

The ensuing simulated data and evolution of parameters are shown
in Fig. 3. In this simulation, the dynamics of parameters induce a
high band synchronised beta burst. The dynamics of phase transition
in this model are akin to a bifurcation or phase-transition. This is be-
cause crossing a phase boundary or ‘separatrix’ in parameter space in-
duces the transitions in mesoscopic activity. Although there is a sud-
den change in the spectral activity induced by this boundary cross-
ing, the drift of the parameters per se is quite smooth and slow (in
comparison with the fast neuronal states) (Papadopoulou et al., 2017;
Rosch et al., 2018a; Rosch et al., 2018c). The synchronised beta burst is
a hallmark of movement disorders (McCarthy et al., 2011; Spitzer and
Haegens, 2017; Sherman et al., 2016), which may also be induced by
drugs/interventions (Rodriguez et al., 2004; Shin et al., 2017) or during
memory retrieval (Jansen et al., 2011). Note that the simulated seizure
activity in Fig. 3 is entirely self-organised. In other words, the drifts



A. Jafarian, P. Zeidman, Rob.C. Wykes et al.

2. Superficial pyramidal cells

1. Spinystellate cells
(excitatory)

Post synaptic potentials

I: d

(14 =)0, =

4. Deep pyramidal cells A ) = T dt

~Gs(vg) + Z Gios(Vi)

Neurolmage 238 (2021) 118243

Fig. 2. Canonical microcircuit (CMC). a) A
patch of cortex divided into cortical columns.
Electrical activity of each cortical column can
be captured by electrophysiological recording,
e.g., ECoG. Each cortical column is divided into
several layers (here 3), each of which is mod-
elled by one population of neurons. Superfi-
cial and deep pyramidal cells are in the su-
perficial and deep layers, respectively. Excita-
tory interneurons (spiny stellate cells) are lo-
cated in layer four — labelled 1 in the figure.
Inhibitory interneurons are distributed across
all layers and are modelled using one popula-
tion that interacts with all other populations. b)
The mean electrical activity of each neuronal
population is derived using mean field theory
using two conversion operators. The postsynap-
tic potentials, x; are transformed through a sig-
moid nonlinearity, s(.), to generate a firing rate
(weighted by connectivity constant g). The en-
suing firing rate is then converted to postsynap-
tic potentials, x, through the linear response of
synapses (parametrised by rate constant T). In
addition, each population is equipped with a

self-inhibition connection G (illustrated as short curved red lines) which assures neuronal homeostasis, i.e., in the absence of neuronal input, the activity of neurons

rest at an equilibrium. Please see Appendix D for detailed formulation of this model.

in self-inhibition were driven by activity-dependent plasticity; here, the
overall power in neuronal activity of the respective neuronal popula-
tions.

The example in Fig. 3 was based upon solving differential equations
for fast and slow dynamics in time. To examine the equivalent charac-
terisation in frequency space, we evaluated the transfer function of the
CMC model, given the trajectory of parameters in Fig. 4. In detail, we
took the trajectory of parameters from Fig. 3-c, and calculated the in-
duced spectral changes through simulation of the transfer function for
each sample point in the data. This first-order approximation to the non-
linear solution in Fig. 4 confirms that phase transitions simulated above
can be attributed to the evolution of parameters. Furthermore, it licenses
the use of spectral data features for inversion of a DCM for cross spectral
density (CSD) data. We pursue model inversion in the next section.

3.1.2. Part B: inferring adiabatic dynamics

The previous section established the face validity of the generative
model in terms of being able to generate plausible phase transitions. In
this section, we turn to the face validation of inference or model inver-
sion. In brief, we now try to recover the slow changes in synaptic pa-
rameters given the (synthetic) electrophysiological data in the previous
section. To infer dynamics of the parameters, first we divide the simu-
lated data above into overlapped epochs (sliding windows that span all
samples in the data with the duration two seconds). Then, we implement
A-DCM by using the standard (canonical microcircuit) DCM for CSD to
explain the cross spectral density of each epoch, furnishing a set of pa-
rameters for each window (Moran et al., 2007; Bastos et al., 2015). The
ensuing predictions of spectral responses and estimated self-inhibition
of deep pyramidal cell are shown in Fig. 5.

Next, to leverage the circular causality between slow and fast
timescales, we inverted a general linear model (GLM) of the parame-
ters from each epoch. The GLM we use for this example is a polynomial
expansion of the spectral power:

0="5(g") + Br(g0)?) + - + B ()P +¢ (©)

In Eq. 6, f;s are unknown coefficients in the GLM, g(y)' is the re-
stricted power spectral density (to some frequency bins) of the observa-
tion data, where i is an exponent that can range from one to an unknown
value p. The frequency bins of interest, here, are dominant spectral peaks
(which can be identified automatically via a singular value decomposi-
tion) before, during and after phase transitions in the observed signal.

To define an optimal value for p, we gradually increased it from one, and
compared the associated free energy (i.e., log evidence). At some point
during the increase of the polynomial order, the free energy (which is
the accuracy minus the complexity of the model) starts to decrease due
to overfitting (Bishop, 2006). The implicit Bayesian model comparison
enables one to find the polynomial order p that has the greatest evidence,
i.e., the best balance between accuracy and complexity. The results of
this model comparison are shown in Fig. 6.

Note that by construction, the spectral data features are both caused
by the parameters (at the first or fast level) and also cause the parameters
(at the slow or second level). The advantage of this unusual but straight-
forward construction is that one can test the hypothesis that particular
frequencies are responsible for increasing or decreasing particular pa-
rameters on a slow timescale. It is this influence of frequency-specific
modulation on synaptic parameters that stands in for the reciprocal cou-
pling between fast and slow timescales evinced in the first section.

3.2. Face validity: model comparison

In this section, we present a face validation of the Bayesian model
comparison and reduction procedures in A-DCM that can be used to
test different hypotheses about how slow (synaptic) changes give rise
to spontaneous paroxysmal transitions. To generate synthetic data, we
specified trajectories of the self-inhibition of inhibitory and deep pyra-
midal cells, to produce a characteristic change in spectral density in elec-
trophysiological data (that stands in for the onset of seizure activity).
The timeseries solution of the stochastic difference/differential equa-
tions generating parameters and simulated data are shown in Fig. 7.
In this simulation, pathological transition is due to changes in self-
inhibition of the inhibitory and deep pyramidal populations. Interest-
ingly, we observe hysteresis phenomena in the behaviour of the model.
This is supported by the fact that when self-inhibition of deep pyrami-
dal and inhibitory cells are increased/decreased, respectively, the model
undergoes high frequency activity, which is known to be one of the hall-
marks of onsets of spontaneous seizures (Traub et al., 2001; Grasse et al.,
2013). Importantly, when the parameters change in the other direction,
the model generates epileptic spikes.

Next, to infer the parameters over 21 predefined epochs, we used
DCM for CSD. The reader should note that due to the nonlinear nature
of the model, there are many combinations of parameters (e.g. synaptic
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a)- LFP response Fig. 3. Forward simulation of the CMC model with

slow dynamics. a) LFP response of the model where
self-inhibition of spiny and inhibitory populations
showed slow changes that depend on postsynaptic po-
tentials generated by spiny and inhibitory cells, respec-
tively. Clearly, there are two distinct dynamics can be
identified in the time domain - spiky normal activity
and synchronised activity in the middle. b) Time fre-
quency representation shows the frequency of synchro-
nised activity in the beta range. c) Slow fluctuation of
-1.5¢ i 1 ) parameters before and after phase transitions- in this

5 10 15 20 25 30 35 40 45 case there is a clear separation between the value of
the parameter that produced the two types of activities
in LFP. In part ¢, G, is the self-inhibition of excitatory

b): time-frequency response
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response of the transfer function given the tra-
~ a3 jectory of slow parameters in Fig. 2 panel c. The
N < 5l right-hand side of the figure shows the power
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time constants, connectivity parameters) that could provide an equally data in Fig. 7 (alternatively, one could use several normal segments and
good fit to the data (Jansen and Rit, 1995) and some may have even bet- use Bayesian model averaging to define the requisite expectation).
ter free energy scores than the model generating the data (Litvak et al., After identifying the prior expectation for the parameters, we ran
2019; Friston et al., 2013). This may sound counterintuitive; however, DCM for CSD for each epoch to quantify changes in self-inhibition asso-
recall that the free energy is the trade-off between the accuracy and com- ciated with each population. In total there are four self-inhibition con-
plexity of the model, where complexity is the difference (KL-divergence) nections. In other words, the hypothesis that we evaluate here is that
between the priors and posteriors. Slight changes from the prior expec- pathological disinhibition in neuronal populations induces paroxysmal
tations in a large number of parameters may offer a less complex expla- transitions and our key question of interest is: which populations con-
nation for the data than having just a few parameters with a large de- tribute to the genesis of seizures? Answering such a question could have
viation from their priors. Therefore, a higher evidence may be afforded a substantive impact on our understanding of epileptic seizures (as op-
to a model that is simpler than the one used to generate the data. posed to non-epileptic seizures), which in turn may assist in designing
In this example, we first define a prior over all model parameters and an effective treatment strategy to supress or abate pathology.
then test various models in which one parameter is allowed to fluctuate Practically, we took the above parameter estimates (posterior mean
around its prior expectation over epochs. To identify the prior expecta- and covariance) to a second level parametric empirical Bayes (PEB) anal-
tion, we estimated all model parameters from a normal segment of the ysis (Friston et al., 2016), with a between-epoch design matrix contain-



A. Jafarian, P. Zeidman, Rob.C. Wykes et al.
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Fig. 5. Predicted time-frequency response of the estimated CMC over epochs.
DCM for CSD is used to estimate parameters for each epoch. The ensuing es-
timates are then used to estimate the transfer functions of the CMC model, to
generate predicted induced frequency responses. The lower panel shows the
variation of parameter estimates in example 1. Note the quantitative difference
between parameters during and after seizures. This figure shows the log scale
parameter pertaining to intrinsic self-inhibition connection G4 of deep pyrami-
dal cells.

ing empirical priors based on the (binarized) spectral envelope of the
data. These empirical priors tell us when particular synaptic parameters
change; enabling model comparison to identify which particular com-
binations of parameters best explain the data. As it shown in Fig. 8b,
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Bayesian model reduction suggests that changes in self-inhibition in in-
hibitory and deep pyramidal cells are the best explanation for the data.
This is consistent with how the data were actually generated. Bayesian
model reduction is used to eliminate redundant parameters by testing
the evidence for models with and without a particular parameter and
computing the Bayesian model average.

We then repeated the PEB analysis by replacing the binarized spec-
tral envelope with frequency specific regressors, to characterise the rela-
tionship between the self-inhibition and spectral responses. This kind of
analysis could disambiguate the contribution of distinct neuronal popu-
lations to paroxysmal brain activity (which can be targeted by different
intervention mechanisms). We selected three frequencies as the regres-
sors for the PEB design matrix (i.e., GLM). Specifically, we identified the
two frequencies that predominated during the seizure period and normal
activity. Then used PEB to characterise the contribution of parametric
changes to spectral responses in the data (or vice versa). The result of
this analysis is shown in

Fig. 9, and suggests that self-inhibition of the inhibitory population
is likely to be responsible for the generation of 3 Hz oscillation (or vice
versa) and both inhibitory and deep pyramidal self-connections are im-
plicated in the generation of 8 Hz activity. Fig. 9 shows the posterior
estimates of the second level (GLM) parameters (on top) and following
Bayesian model reduction (below).

The inferred parameters of the GLM (coupling frequency-specific ac-
tivity to self-inhibition parameters) are plotted in Fig. 8. As can been
seen from these posterior estimates, the upward/downward changes in
self-inhibition of the inhibitory and deep pyramidal cells are well cap-
tured. This frequency-specific analysis may provide valuable informa-
tion that it would not otherwise be possible to extract from electrophys-
iological data. More importantly, capturing trends in parameter dynam-
ics may be important for designing effective treatments of epilepsy as
different intervention mechanisms may have an opposite effect on differ-
ent ion currents (Blenkinsop et al., 2012; Nevado-Holgado et al., 2012).
In the final section, we rehearse A-DCM, using empirical data to provide
an illustrative example.

4. Worked example: animal model of epilepsy
As the final example in this paper, we apply A-DCM to a Picrotoxin

animal model of seizures (Kitzel et al., 2014). In this animal model, the
cause of paroxysmal activity can be related to pathological disruption of

Predicted

Observed

Segments
°

Fig. 6. Modelling the evolution of parameter (AG,) with respect to empirical frequency content in the data. a) This panel shows relative free energy (with respect
to the smallest model evidence) of the second level GLM. We estimated the model evidence associated with models of changes in synaptic parameters based on a
linear-in-coefficients polynomial of the empirical frequency content of the ensuing neuronal responses — as captured by the data (Eq. 6). Here the optimal power of
the polynomial is 4. b) Observed and predicted model of the parameter dynamic (AG,) with polynomial order 4 in Eq. 6. In this and all subsequent figures, changes
in the parameters are expressed in terms of log scaling. In other words, a value of 0 corresponds to a scaling by exp(0)=1. For small changes, the log scaling is roughly
equal to the proportional change (i.e., -.1 is roughly a decrease of 10%). The free energy of a model with order 4 was 30674 and for order 5 was 30557 < 30674. By
converting these log evidence approximations to the posterior probability of each model (which by Bayes rule under equal priors is a softmax function), we would

select the model order of 4, which has posterior probability approaching 100%.
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Fig. 7. Simulation of induced seizures. a) Slow dynamics of parameters of the CMC model. b) Simulated ECoG and its time frequency representations, which shows
some features of spontaneous seizures, i.e., before the seizures we observe fast activity that is followed by pathological spikes around 5-8 Hz.
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Fig. 8. Parametric empirical Bayes analysis of simulated data. a) Estimated slow dynamics of parameters in the CMC mode over 21 segments of data with average
of 2 second duration. b) PEB analysis with a design matrix based on the spectral envelope of the data. The original PEB posterior estimates show on top (full model)
and the estimates following Bayesian model reduction are shown below (reduced). The reduced model reveals the underlying causes of seizures in Fig. 7 and clearly
capture is the trends in parameters. G|, G,, G; and G, are self-inhibition of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells, respectively. As

in previous figures, the effect sizes relate to unitless log scaling parameters.

synaptic connections at the focus of drug injection, which is then spread
to other regions (Kitzel et al., 2014; Wood, 2014).

The animal was implanted with a wireless ECoG device on its brain
and a cannula was inserted into its primary visual cortex, in the right
hemisphere. We then injected a chemo-convulsant drug (Picrotoxin,
300-400nl of 10mM) via the pre-implanted cannula. A few minutes af-
ter the injection, large amplitude spikes emerged (due to the hyper-
synchronised response of the neuronal population at the site of in-
tervention), followed by occurrence of seizures ~20-30 minutes af-
ter injection. Behavioural manifestation of seizures includes freezing,
followed by head bobbing (20-30s), hunching, limb-kicking and oc-
casionally rearing, falling over and wet dog shakes. Average dura-

tion of the seizures period in this animal model is around ~ 53s,
with an inter seizure interval of approximately ~200 s. In this ani-
mal model, the activity of the brain recovers to the baseline activity
2-3 hours after the injection, which implies ~15-20 seizures over 2
hrs. A sample of ECoG data and its time frequency response are shown
in Fig. 10.

At the initial phase of drug injection, seizures commenced focally
and only the injection site was affected by the drug. Subsequently other
brain regions were recruited by the seizures. We elected to study the
underlying causes of the seizures in the initial phase of the pathology
and investigate its underlying mechanisms to illustrate an application
of A-DCM. See also Appendix B.
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Fig. 9. Parametric empirical Bayes analysis based on the predominant frequency content of the data. a) changes in parameters (black) and predicted changes of G3
and G4 (red) using PEB with three frequency covariates in the GLM design matrix. b) second level GLM parameters (above) and following Bayesian model reduction
(below). The BMR suggests that slow waves (3 Hz) are associated with inhibitory populations, whereas higher frequency pathological activity (8 Hz) may be induced
by both deep pyramidal and inhibitory populations. G,, G,, G; and G, are self-inhibition of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells,

respectively.
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Fig. 10. Real ECoG data from an animal model with normal to large spikes and
seizures. Lower panel shows a scaled time-frequency plot of the ECoG data.

We first fitted the CMC model to the normal activity to establish
the prior expectation for model parameters. We then epoched the data
each of which has 2 seconds duration and estimated key model parame-
ters. We fixed some of the parameters (e.g., noise hyperparameters and
sensor gain, which are not likely to vary in this animal model during

10

the experiment) and only allow the rate constant and self-inhibition of
neuronal populations to change during and after seizures. After model
inversion, we ran a PEB analysis with a binarized spectral envelope as
a regressor (column vector with zero and one entries, where zero and
one denotes normal and seizure epochs, respectively). The results are
shown in Fig 11 and suggest that disinhibition in the inhibitory and
deep pyramidal cells populations best explain the data.

Our results are in agreement with the clinical understanding of
seizures in this animal model (Wood, 2014; Berglind et al., 2014). In
detail, these seizures are thought to be due to disruption of interaction
between inhibitory populations and other populations (Berglind et al.,
2014; Rovainen, 1983). In our modelling results, seizures were ex-
plained by reduction of inhibitory self-connectivity (i.e., disinhibition).
These results are informative because disruption in the self-regulation
of the inhibitory populations engenders changes in postsynaptic in-
terneuron potentials, and thereby affects activity of other populations.
Our analysis also suggests that the deep layer is likely to contribute to
seizures dynamics, which is plausible, since from an anatomical perspec-
tive the density of neurons in the deep layer of the cortex is greater than
in the superficial layers. In this DCM, such mechanisms are reflected in
the synaptic time constant of deep pyramidal populations that increased
by over 50% in this example.

Finally, we repeated the above analysis using frequency-specific re-
gressors to characterise the relationship between disinhibition in par-
ticular populations and their frequency specific correlates. Here, the re-
gressors of the GLM were the predominant empirical frequencies in the
data of 5, 19, and 40 Hz (identified using singular value decomposi-
tion of the time frequency data). The PEB results (Fig. 12) show that
seizures (which are characterised by 3 to 8 Hz activity) are best ex-
plained by the reduction in effective membrane time constant of deep
pyramidal cells, with interneurons contributing to 19 Hz activity. This is
again consistent with physiological findings from this animal model of
seizures.
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Fig. 11. Model fit plots that show predicted
and observed signals using the DCM for CSD
approach for example normal and patholog-
ical segments of the animal data. The right
panel shows the results of parametric empir-
ical Bayes (PEB) and Bayesian model reduc-
tion (BMR) of slowly changing parameters. The
PEB model is a hierarchical model, with a gen-
eral linear model (GLM) of the neural param-
eters at the between-epoch level. The design
matrix of the GLM is simply the binarized spec-
tral envelope encoding epochs with and with-
out seizure activity. BMR suggests that disinhi-
bition of deep pyramidal and inhibitory popu-
lations was likely to explain the seizure activ-
ity. G|, G,, G; and G, are self-inhibition pa-
rameters of excitatory, superficial pyramidal,
inhibitory, and deep pyramidal cells, respec-
tively. T, T,, T; and T, are the time constants
of excitatory, superficial pyramidal, inhibitory,
and deep pyramidal cells, respectively.
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Fig. 12. Parametric empirical Bayes and Bayesian model reduction modelling of slowly changing synaptic parameters. The regressors of the between-epoch GLM
comprise the frequency content in the signal (left hand side of the figure). The right side of the figure shows the GLM parameters (top row) and the reduced parameters
after Bayesian model reduction (bottom row). The model reduction with this design matrix shows that inhibition and deep pyramidal cells are likely to explain the
seizures at the different frequencies. G|, G,, G5 and G, are self-inhibition parameters of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells,
respectively. T, T,, T and T, are the time constant of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells, respectively.

5. Discussion
This paper has introduced a adiabatic dynamic causal model (A-

DCM) that enables one to compare competing hypotheses about the bi-
ological mechanisms that might underwrite phase transitions in electro-

11

physiological recordings. Crucially, A-DCM is formulated to elucidate
the most likely causal relationships between synaptic efficacy and spec-
tral activity in electrophysiological data, which is commonly used char-
acterise and understand brain states in the healthy and pathological
brain (Shaw et al., 2017). The use of an adiabatic approximation and
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mean field theory furnishes an efficient way to infer the relationship
between slow changes in synaptic parameters and their neuronal corre-
lates in spectral data. The resulting model could, in principle, be used
to infer how interventions modulate states of the diseased or healthy
brain (Fleming et al., 2020; Liang et al., 2015; Moran, 2015). This would
require construct validation experiments to test consistency and agree-
ment between predictions of the model and effects of interventions on
real brains e.g., (Mina et al., 2013).

We have motivated A-DCM using Synergetic theory and the Adia-
batic approximation. As touched on in the introduction, A-DCM can
potentially provide complementary information alongside the conven-
tional slow-fast modelling approach. In A-DCM slow variables are mod-
ulated with respect to the frequency contents of fast states, the slow
variable is equipped with a sort of memory (since the frequency domain
representation of neuronal responses rests on the second order statistical
moments of fast states). In this respect, one can establish a link between
parametrised fluctuations in A-DCM and slow dynamics in slow-fast dy-
namical systems (Sanders et al., 2007). Akin to A-DCM idea, averaging
of slow-fast dynamical systems allows separation of slow and fast dy-
namics, where the slow dynamics are an integral of fast states (under the
assumption that fast states are ergodic for each value of the slow states).
We also note conceptual links between A-DCM and linear response the-
ory (LRT) in physics (Ruelle, 2009). Specifically, LRT implies that if an
ergodic system — e.g., neural mass or mean field model (Marreiros et al.,
2009) —is left without any perturbation, it eventually reaches its equilib-
rium (Lucarini, 2008). If, however, some parameters are slowly chang-
ing, LRT assures the existence of a new equilibrium for the system that
can be attained instantaneously. In addition, LTR suggests that a process
with slowly varying parameters can be reversible (i.e., it can attain its
initial equilibrium). Crucially and more closely related to A-DCM, LTR
establishes a link between time domain features of dynamical systems
and its equilibrium, thereby allowing parametric/functional expression
of the system’s response in the time/frequency domain (Reick, 2002;
Lucarini, 2008; Lucarini et al., 2007; Dykman et al., 1998).

We have introduced the notion of circular causality in a slightly
‘tongue-in-cheek way’. In a dynamical setting, circular causality depends
upon bottom-up and top-down causation among the latent states gener-
ating data. This entails a generative model in which fast neuronal states
cause slow, activity-dependent changes in synaptic parameters; while,
at the same time, the synaptic parameters enslave the fast, neuronal
states. In our adiabatic DCM estimation, the coupling between fast and
slow dynamics is modelled by generating fast data features using slow
data features as priors on the latent states. As noted above, this means
the data are used twice: as both cause and consequence of fluctuations
in hidden (neuronal) states and parameters. However, the data features
in question are not the same. The data being predicted summarise fast
neuronal activity in terms of its spectral content within an epoch. Con-
versely, the empirical priors are furnished by slower changes in spectral
content from epoch to epoch. This separation of temporal features char-
acterises this particular DCM and sets it apart from previous models,
upon which the current adiabatic DCM is based. In summary, our fo-
cus was on establishing casual links between slow and fast states, both
in terms of forward simulation and estimation procedures. To do this,
we used models that were equipped with slowly varying parameters,
which cause — and are caused by — changes in the spectral contents of
fast states. This builds upon the use of DCM to characterise dynamic ef-
fective connectivity (Park et al., 2017; Van de Steen et al., 2019). For
example, (Park et al., 2018), used a principal component analysis of
the first level connectivity parameters to generate empirical (between-
epoch) priors for time-varying (within-epoch) effective connectivity. In
the present setting we used the spectral features of empirical responses
to furnish empirical priors.

In this work, we offered two forward simulations to illustrate the dif-
ferent kinds of phase transition that one might infer using A-DCM. In the
first simulation, phase transitions in brain activity were explained when
parameters moved from one region of parameter space to another, i.e.
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bifurcations (Breakspear et al., 2006). In the second simulation, we show
that underlying causes of paroxysmal transitions can be understood as
a hysteresis phenomenon (Iasemidis, 2003; Voss et al., 2012), where
in one direction of parameter variations, the model produces gamma
activity while in reciprocal direction, the model generates pathological
spike-wave discharge activity.

In terms of estimating parameters, in the first face validity analy-
sis, we illustrated how one can establish links between fluctuation of
parameters and spectral responses in the data. This perhaps would be
most useful for tracking dynamics of parameters with respect to changes
in spectral responses in real data. The potential application of such a
generative model would be tracking, where we would be interested in
the modulation of brain activity with respect to changes of transmem-
brane currents, which may be subject to alteration by interventions. In
the second face validity study, we recovered parameter trends that in-
duced spontaneous seizures. In addition, we showed that it is feasible
to use Bayesian model reduction to evince underlying biological mech-
anisms that explained transition dynamics. In principle, one could ask
whether seizure dynamics are noise-driven, as opposed to itinerant dy-
namics (e.g., heteroclinic cycles in parameter space). Because the gen-
erative model of DCM for CSD is equipped with (a model of) random
neuronal fluctuations, one can fit separate DCM for CSD models with
neuronal fluctuations that are fixed or time varying across epochs, and
compare their evidence using Bayesian model comparison. Clearly, this
would rest on the assumption that seizure activity was accompanied by
changes in the level of random fluctuations; enabling neuronal dynam-
ics to explore other basins of attraction. Furthermore, the linearisation
— inherent in estimating epoch-specific parameters — precludes an ex-
plicit modelling of deterministic multi-stability. At first glance, this may
appear a limitation of linearised models. However, stochastic chaos is
distinct from multi-stability in deterministic systems and may be ap-
proximated more easily with local linear assumptions. For example, bi-
stability in a deterministic system with two basins of attractions will,
with an appropriate level of random fluctuations, present as a single
pullback attractor (Crauel and Flandoli, 1994). Please see (Moran et al.,
2011) for a discussion of these and related issues.

The temporal resolution of the inferred parameters depends upon
the number of epochs and the overlap between epochs. In this paper,
the overlap between epochs was based on forward simulation of the
model. For instance, as shown in Fig. 3, the parameters were varied
very quickly from one epoch to the next (which in turn induced spikes in
pre-seizure activity), whereas in Fig. 7, the parameters changed slowly
and smoothly (prior to seizure onset). Therefore, we used overlapping
epochs to infer parameters that reproduced the data in Fig. 3, whereas
to estimate model parameters for the data in Fig. 6, a non-overlapped
approach was employed. Having said this, it would be possible to use a
pragmatic approach to segmenting data into sub (quasi)-stationary seg-
ments using change point detection algorithms (a function of this kind
is now implemented and available in Matlab) to define boundaries of
epochs for the data with pathological transitions—and one may overlap
between them (to assure proper estimation of PSDs).

In the worked example, we used the CMC model to model the un-
derlying causes of drug-induced seizure activity. Here our results were
in line with known pathophysiology. In this example, the underlying
causes of seizures were attributed to disruption of inhibition. Our mod-
elling approach suggests that the inhibitory population is largely respon-
sible for the generation of 3 Hz waveforms. One could ask whether other
- potentially better - explanations could be found for the observed data.
Here, we limited the space of possible hypotheses, by using an animal
model, where seizure aetiology was known to have its source at the in-
jection site. Our results were consistent with what is known about this
animal model. Nevertheless, better explanations for these data might be
found, either through different mixtures of connectivity parameters in
the same kind of model, or by selecting a model with a different form.
For example, one might try conductance-based models, which quantify
changes of ion dynamics. The confidence we can place in these differ-
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ent explanations for the data is based on the posterior probability of the
accompanying models. Predictive validity can then be assessed by ask-
ing whether artificial lesions or drugs administrated to the DCM gener-
ate similar changes to data features seen empirically. While our results
clearly need to be further reproduced and validated; they speak to a
promising application of A-DCM. As measured above, we only consid-
ered the initial phase of seizures in this animal model, where underlying
causes of the seizures can be linked with the local effects of the drug.
More interesting questions might be investigated using A-DCM in the
second phase of seizures in this animal model, where other brain re-
gions are contributing to the pathology.

This paper has focused on a single neural mass model and associ-
ated transfer functions. Clearly, one question that arises is: can this ap-
proach be scaled up to large networks or graphs? DCM for CSD has
been applied to distributed brain networks in many applications e.g.,
(Papadopoulou et al., 2017; Rosch et al., 2018a; Rosch et al., 2018b).
Due to the computational efficiency of variational approaches, there are
no special constraints on the size of the network. However, a deeper is-
sue here is the inherent complexity of the models needed to explain
multichannel or multielectrode recordings. In other words, there may
be an upper bound on the number of nodes — and their connections —
that can be inferred on the basis of any given data. In principle, this
bound would be addressed using Bayesian model comparison. In other
words, there will be an optimum size of the network for any given set
of data that would maximise Bayesian model evidence or its variational
free energy bound.

A general issue with dynamic causal models is the potential for local
minima during model inversion; especially when dealing with expres-
sive models with large numbers of parameters. However, perhaps coun-
terintuitively, more expressive models can elude local minima, because
the parameter space has more dimensions or directions from which the
search can escape. This means that normal practice would be to start
with an over-parameterised model and then use Bayesian model reduc-
tion to eliminate redundant parameters. Bayesian model reduction in
this setting is just an instance of Bayesian model comparison based upon
model evidence. Crucially, the model is defined uniquely in terms of pri-
ors. This means that one can score the effect of changing the priors in
terms of its effect on the model evidence—and thereby quantify the role
of priors in explaining the data at hand.

A key theme in this modelling endeavour is the circular causality
between connection strengths or synaptic efficacy and the neuronal ac-
tivity these connections support. There is a large literature on models of
synaptic plasticity (Demsar and Forsyth, 2020) and associative plastic-
ity (Humeau et al., 2003; Kujirai et al., 2006); namely, the relationship
between pre-and post-synaptic activity that can be linked to slow varia-
tion of synaptic parameters. One could also consider activity-dependent
plasticity (Rebola et al., 2010; Isomura and Friston, 2019) as a function
of the complex cross spectra or cross covariance functions summaris-
ing neuronal dynamics. In turn, this means that one could appeal to the
notion of spike timing-dependent plasticity (STDP), to model changes
in effective connectivity in terms of the cross-covariance function be-
tween a source and target population (which is well formulated in the
spectral domain). The utility of expressing plasticity (i.e., the dynam-
ics of slow parameters) in terms of covariance functions is that there is
an equivalent frequency space representation; thereby accommodating
the representation of dynamics in terms of complex cross spectra in the
generative (dynamic causal) model. The only unknown hyperparame-
ters in this instance are the coefficients scaling the amplitude and width
of the functions that lead to increases and decreases in synaptic effi-
cacy. Furthermore, there are empirical constraints on these functions.
For example, for STDP, one would normally use the first derivative of a
Gaussian function, with a dispersion of about 50 ms. With this formu-
lation of adiabatic dynamics, we automatically account for ideas like
spike rate adaptation (Peron and Gabbiani, 2009), spike timing depen-
dent plasticity (Caporale and Dan, 2008; Dan and Poo, 2006) and the
transmission delays inherent in the dynamic causal modelling of cross

13

Neurolmage 238 (2021) 118243

spectra (Friston et al., 2012). In the future, we hope to extend A-DCM to
address the delicate interplay between synaptic plasticity and spectral
fluctuations. The second level PEB design matrix (which is used to con-
strain model parameters based on the spectral content of the data) can
also be augmented with regressors that encode information about fluc-
tuations in other high-order statistics (e.g., Lyapunov exponents, Haus-
dorff dimension, et cetera). Leveraging such prior information may help
to capture the underlying dynamics of seizure initiation, termination
and related phase transitions.
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Appendix A

A technical aspect of this generative model is the form of the like-
lihood for the complex cross spectra. With ideal estimators, one could
assume that these spectral data features had a Wishart distribution, with
one degree of freedom for each frequency. However, we can assume
that the cross spectra constitute the average of estimates, with consis-
tent and asymptotically normal estimates. In this setting, the variance
of the difference between the predicted and observed spectral estimates
is equal to the cross spectral density times the (effective) degrees of
freedom (h), which we treat as an unknown parameter. Specifically, the
precision is given by the asymptotic results where, the scaled difference
between the sample spectral density (g) and the predicted density (G)
(Camba-Mendez and Kapetanios, 2005):

e=vec (g—G) (A1)

is asymptotically complex normal and the covariance between e(i, j) and
e(u, v) is given by Q/h and:

QO = G@,u)*G@{,u); h =2 xm+ 1

Here m represents the number of averages from a very long time
series. The inverse of the covariance is thus a scaled precision, where
the hyperparameter (h) plays the role of the degrees of freedom (e.g.,
the number of averages comprising the estimate). We use the sample
spectral density to create a frequency specific precision matrix for the
vectorised spectral densities, under the assumption that the form of this
sample spectral density resembles the predicted spectral density (which
will become increasingly plausible with convergence).

Appendix B

In the animal model of seizures in this paper, paroxysmal activity
may be induced as a result of the disruption of the interaction between


https://www.fil.ion.ucl.ac.uk/spm/

A. Jafarian, P. Zeidman, Rob.C. Wykes et al.

Neurolmage 238 (2021) 118243

LFPresponse

T T

T T T T

i L i A i i I

60

40

Hz

20

5 10

15

20 25 30 35 40 45 50

time-frequency response

20 45 50

Fig. 13. Forward simulation of the CMC model with time varying parameters. Here the rate constants and synaptic efficacy of inhibitory, spiny stellate and deep
pyramidal cells are changed from their prior expectation to generate spike-like activity and recurrent of seizures, as shown in LFP response of model.

inhibitory interneurons with other populations. Such disruption can be
modelled by changing the balance between synaptic efficacies and gains
of excitatory and inhibitory populations (Wendling et al., 2002). For
example, since the drug was delivered to the deep layer of cortex, one
may alter the rate constant/self-inhibition of inhibitory, spiny stellate
excitatory cells and deep pyramidal cells in the CMC model to replicate
both spike discharges and recurrent of seizures. One example of such a
forward simulation is shown in Fig. 13.

One should note that, this is only one way to generate pathophysiol-
ogy and there may be many other plausible mechanisms that one could
implement using the CMC model to generate paroxysmal transitions of
the data. As explained in the paper, the most compelling questions — for
epileptologists — are which synaptic parameters are likely to explain the
underlying causes of pathognomonic data?

Appendix C

Many mathematical treatments of paroxysmal activity are cast in
terms of bifurcations and phase transitions — borrowing techniques from
dynamical systems theory (e.g., (Saggio et al., 2020)). The linearised
models adopted by the DCM for CSD approach preclude an explicit for-
mulation in terms of dynamical instability or multi-stability. Further-
more, the underlying generative model is predicated on ensemble dy-
namics that may or may not evince stochastic chaos (as opposed to de-
terministic chaos). Having said this, the notion of bifurcation still plays
an important role in understanding the way that DCM generates data.
This is meant in the sense of transcritical bifurcations (normally hyper-
bolic fixed points), where movement in parameter space causes a thresh-
old crossing of one or more eigenvalues of the system’s Jacobian. These
threshold crossings are usually suppressed in DCM — and modelled as
critical slowing by allowing for eigenvalues that approach zero from be-
low but never reach zero (i.e., the generative model assumes, a priori,
self-organised criticality but precludes trans-critical bifurcations). The
ensuing dynamics therefore approach a transcritical bifurcation produc-
ing similar spectral data features, while retaining dynamical stability.
Put more simply, DCM can reproduce the spectral features that are usu-
ally associated with bifurcations in deterministic systems but does so
by using a local linear approximation that is always dynamically stable.
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This means that seizure onsets and offsets can be modelled by move-
ment in parameter space that approximates, to first order, the kind of
phase transitions seen in deterministic formulations.

At the onset/offset of seizures dynamics, rapid changes in brain
states—from normal to pathological (and vice versa) makes it chal-
lenging to track very fast changes in model parameters (i.e., synaptic
efficacy) that could underwrite phase transitions. However, one could
smooth spectral transitions. Specifically, to model the onset (offset) of
paroxysmal transition, one could generate so called geodesic paths be-
tween power spectral densities (PSDs) of normal and seizures activities
to identify changes in model parameters that induce transitions: let the
PSDs of normal and seizure activity be denoted by P, (w), P, (w) re-
spectively; then parameterised geodesic paths between these spectral
densities can be generated via P, (w) = P! (w)PZ‘ 7 (w), where t € (0,1)
(Georgiou, 2007). By selecting different values for z, one could gener-
ate spectral data features that connect the normal and seizure activity
in the frequency domain. Parameters that model these spectral features
should trace a path in parameter space that can explain the onset (offset)
of seizure activity.

Appendix D

Table 1D This appendix summarises the canonical microcircuit
(CMC) (Bastos et al., 2015; Bastos et al., 2012) that we employed in this
paper, and the text is adapted from (Jafarian et al., 2020). The CMC
model comprises four neuronal populations: namely, spiny stellate cells
in the granular layer (ss), superficial pyramidal cells in the supragran-
ular layer (sp), inhibitory interneurons distributed in all layers of the
cortex (ii) and deep pyramidal cells in the infragranular layers (dp).
In this model, two conversion operators govern the dynamics of each
neuronal population (Jansen and Rit 1995). The first operator converts
the mean pre-synaptic firing rate m to the mean postsynaptic membrane
potential V as follows (Freeman, 1975):
V=h®m (1d)

Where ® denotes the linear convolution operator and A is the im-
pulse response function (synaptic kernel) with synaptic rate constant 7T
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Table 1D
Default values for the parameters of the CMC model.
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Description Value [ss sp ii dp]
T Postsynaptic rate constant of the i-th neuronal population. =[256,128, 16, 32]
8ik Intrinsic connectivity between populations i and k (self-inhibition in case of i=k which would be denoted by G,_,). g=[2111]%512
Carmichael, D.W., Vulliemoz, S., Murta, T., Chaudhary, U., Perani, S., Rodionov, R.,
Le—LT x>0 Rosa, M., Friston, K., Lemieux, L., 2017. Measurement of the mapping between in-
h(t) = T = (2d) tracranial EEG and fMRI recordings in the human brain. bioRxiv, 237198.
0, x<0 Chen, C., Kiebel, S.J., Friston, K.J., 2008. Dynamic causal modelling of induced responses.

The second operator then transforms the postsynaptic membrane po-
tential into a firing rate, which forms the input to the next connected
neural population (Jirsa and Haken, 1997):
-1 1

1+exp(=V) 2

In effect, the dynamics of postsynaptic potentials in the population i,

V;, obey the following second order differential equations as follows:

o(V) (3d)

EX) (4d)

2
<1+i1> Vi) =s(v.,

where the intrinsic presynaptic excitations form population j is denoted

by Vi and the function s is defined as follows (Friston et al., 2019):
SS—)SSU( SS gSp—)SS ( Sp) gll—)SSo-( l) +w if i =SS
sp—>spo-( sp) ss—>sp ( ss gii—»spo-( ii ) if i= Sp

S(Vi’ Vj) = u—mo_( 1) gdp—?llg(Vdp) + &ss5—ii0 Vss +gsp—>ii°_(Vsp)

ifi=ii
“Gapapo(Vap) = Liimap® (Vi) + 8spmapo (V) if i =dp

(5d)

The laminar specificity of the extrinsic and intrinsic connections in
Eq. (3) are specified by placing prior constraints on the intrinsic (within-
region) connectivity parameters g, G,_, .. The random neuronal fluctua-
tions w that drive the model have zero mean and small variance equal to
exp(-32) in the simulations of this paper. The initial states of the model
were zero. The initialisation of variational inference uses the prior ex-
pectation of the parameters. These priors — for the neural mass models at
hand - have been chosen based on years of experience with this canon-
ical microcircuit model and were originally based upon neurophysiol-
ogy. Please see (Friston et al., 2019; Auksztulewicz and Friston, 2015;
Bastos et al., 2015) for quantitative details.
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