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E
D
 P

RThe generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of defined
transcription factors has provided the regenerativemedicine fieldwith a new tool for cell replacement strategies.
The advantages that these pluripotent cells can offer in comparison to other sources of stem cells include the gen-
eration of patient-derived cells and the lack of embryonic tissue bymaintaining a versatile differentiation poten-
tial. The promise of iPS cell derivatives for therapeutic applications is encouraging albeit very early in
development, with the first clinical study currently ongoing in Japan.Many challenges are yet to be circumvented
before this technology can be clinically translated widely though. The delivery and expression of the
reprogramming factors, the genomic instability, epigenetic memory and impact of cell propagation in culture
are only some of the concerns. This article aims to critically discuss the potential of iPS cells as a new source of
cell therapeutics.

© 2014 Published by Elsevier B.V.
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1. Introduction

The increased prevalence of degenerative diseases remains challeng-
ing to manage with the currently available small molecule therapeutics
and surgical interventions. This has prompted the search for alternative
strategies that pursue restoration of the damaged or degenerated tissue
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rather than just compensation of their impaired function [1]. The avail-
ability of adequate cell sources to populate injured or degenerated tissues
is a central priority in regenerative medicine, and stem cells are invalu-
able candidates thanks to their capacity to self-renew and differentiate
into several cell types [2]. Various stem cell types including embryonic,
fetal, perinatal and adult stem cells have been investigated as sources
for regenerative therapies [3,4]. Immune compatibility and differentia-
tion potential of the stem cells are crucial features for their suitability.
Unfortunately, these two parameters are not often both satisfactorily ac-
complished that limits their successful use [5,6]. In addition, propagation
in culture can be challenging as in the case of fetal (isolated from aborted
S) cells: A new source for cell-based therapeutics? J. Control. Release
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t1:1Table 1
t1:2Current vector technologies used for reprogramming transcription factor overexpression
t1:3and the generation of iPS cells.

Vector technology Safety Efficiency Ref. t1:4

Viral vectors Integrating Retrovirus − ++ [12] t1:5

Lentivirus − ++ [26] t1:6

Inducible lentivirus − ++ [27] t1:7

Excisable Excisable lentivirus ++ ++ [28] t1:8

Non-integrating Adenovirus ++ − [29] t1:9

DNA free Sendai virus ++ ++ [30] t1:10

Naked DNA PiggyBac transposon ++ + [31] t1:11

pDNA + − [32,33] t1:12

Episomal pDNA +++ +++ [34,35] t1:13

mRNA +++ +++ [36] t1:14

DNA free microRNA +++ + [37] t1:15

Protein +++ − [38] t1:16
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fetuses) and perinatal stem cells (from amniotic fluid, umbilical cord
blood and placenta) [4]. Finally, the ethical issues surrounding the use
of embryonic materials have prompted a variety of hurdles to research
the clinical development of stem cells [7].

Despite the challenges, hundreds of clinical trials have explored the
utilization of stem cells in regenerative medicine. Transplantation of
bone marrow-derived stem cells for the treatment of hematopoietic
diseases has already been safely and successfully used in the clinic for
a number of years [8]. Nevertheless, the source, characterization and
purity of any type of cell sourcing for transplantation purposes remain
issues of intense controversy as recent cases reveal [9–11].

The generation of induced pluripotent stem (iPS) cells that can be
derived from the adult cells of specific patients, has recently revolution-
ized the field posing hopes that some of the roadblocks traditionally as-
sociated with stem cell therapy could be overcome [12,13]. This article
aims to offer an overview of the potential applications of iPS cells, and
highlight their use in cell-based therapies for regenerative purposes.

2. Induced pluripotent stem (iPS) cells: a new source of stem cells

In 2006 Shinya Yamanaka and collaborators published a ground-
breaking study demonstrating transcription factor-mediated cell
reprogramming to pluripotency that was awarded the 2012 Nobel
Prize in Medicine along with Sir John Gurdon's much earlier studies on
reprogramming using somatic cell nuclear transfer [14]. In Yamanaka's
work, mouse embryonic and adult fibroblasts were genetically
reprogrammed to a pluripotent state by viral (retrovirus) gene transfer
of four transcription factors (Oct3/4, Sox2, Klf4 and cMyc) that are in-
volved in the maintenance of pluripotency in ESCs. The resulting cells,
known as induced pluripotent stem (iPS) cells, grow indefinitely in cul-
ture forming colonies that are morphologically indistinguishable from
those of embryonic stem (ES) cells [12]. The fully functional pluripotent
character of iPS cells was confirmed one year after their initial descrip-
tion, when iPS cells selected for the expression of the pluripotency
marker Nanog were found to contribute to the adult tissues of chimeric
mice obtained by blastocyst injection, including the germline [15].

The generation of iPS cells from human fibroblasts has also been
achieved by expression of human OCT3/4, SOX2, KLF4 and cMYC [13],
replacement of cMYC and KLF4 by NANOG and LIN28 [16] and even
elimination of the tumorigenic cMYC [17]. Recently, reprogramming of
human fibroblasts has proven achievable by means of the overexpres-
sion of lineage specific genes and without SOX2 and OCT4, the original
‘Yamanaka factors’ that were thought to be indispensable for the induc-
tion of pluripotency. Such findings imply that the fully differentiated
state of somatic cells inherently incorporates larger degrees of plasticity
than what was thought until now [18].

iPS cells can be derived from a wide variety of starting cells, even
though fibroblasts are the most common source for iPS cell generation
today due to their accessibility (can be easily obtained with a skin biop-
sy) [19]. Other cell types from diverse developmental origins, such as
hepatocytes (endoderm origin), circulating T cells (mesoderm) and
keratinocytes (ectoderm) have also been successfully reprogrammed
into iPS cells even though efficiencies vary [20]. Recently, umbilical
cord blood and peripheral blood cells have been projected as advanta-
geous candidate sources for the generation of iPS cells [21]. The main
hurdles in the harvesting of dermal fibroblasts are the requirement for
skin biopsy (accessible but invasive), the need to expand the collected
cells for several passages in order to achieve enough cell numbers for
iPS cell generation and the fact that these cells are directly exposed to
the insults of the environment (e.g. mutations provoked by UV radia-
tion). Mononuclear cells from peripheral blood on the contrary do not
suffer from such drawbacks [22–24].

Alongwith different somatic cell types used to generate iPS cells, dif-
ferent methodologies have also been pursued to overexpress the
reprogramming transcription factors and induce conversion to the plu-
ripotent state [25]. The main goal has been to avoid use of integrating
Please cite this article as: I. de Lázaro, et al., Induced pluripotent stem (iP
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vectors and achieve safer yet efficient cell reprogramming. Table 1 sum-
marizes the methodologies used today and classifies vectors according
to their safety/efficiency balance. We determined ‘safety’ according to
the reported levels of genomic integration and risk of immune reactions,
while ‘efficiency’ according to the extent of reprogramming achieved
(i.e. number of iPS colonies obtained from the starting somatic cells).

Muchhas been achieved since the initial report of iPS cell generation,
not only in the optimization of the reprogramming protocols, but also in
the elucidation of the mechanisms behind cellular reprogramming, as
reviewed elsewhere [39]. Buganim et al. made use of single-cell analysis
to show that cellular reprogramming can be divided into an early sto-
chastic phase that has a higher degree of variability in the gene expres-
sion patterns among cells and a later phase that is more hierarchical
[40]. Later, Polo et al. examined the course of reprogramming to
pluripotency by genome-wide analyses and confirmed that the cells un-
dergo two distinct waves of transcriptional changes to result in iPS cell
generation. Also, genes that hinder the conversion of the partially
reprogrammed intermediates to iPS cells were identified [41].

Manymore studies are advancing our understanding of cellular plas-
ticity and enable researchers to explore new alternative cellular
reprogramming technologiesmost appropriate for each application. Re-
cently, Rais et al. showed that the depletion of the levels of Mbd3 pro-
tein concomitantly with the overexpression of Oct3/4, Sox2, Klf4 and
cMyc resulted in the deterministic reprogramming of cells to the plurip-
otent cell state with efficiencies very close to 100% [42].

3. The short- and long-term applications of iPS cell technology

The differentiation potential of iPS cells, considered practically
equivalent to that of ES cells, along with the possibility to obtain them
from individual patients has uncovered awide range of potential utiliza-
tions [43] that are illustrated in Fig. 1.

In the short term, the ability to produce iPS cells that can then be dif-
ferentiated in vitro from individuals suffering froma particular disease is
thought to contribute towards development of better disease modeling
for a diverse range of conditions [44]. Reliable diseasemodels are gener-
ally difficult to obtain otherwise, since human primary cells are not eas-
ily maintained in culture for long periods of time and animal models
inevitably involve inter-species variabilities [45]. The iPS-derived
in vitro models can constitute an invaluable source of information to
better understand the mechanism of diseases and to help recapitulate
the features of the pathogenic phenotype [46].

The majority of models developed to date focus on cardiovascular
and neural or neuromuscular disorders [47], such as long QT syndrome
(a disorder of the heart's electrical activity) [48], Alzheimer's disease
[49], Friedreich ataxia [50] and myotonic dystrophy [51]. Other studies
aim to achieve models for the elucidation of mechanisms involved in
disorders associated with premature aging such as Hutchinson–
Guilford progeria [52,53] and dyskeratosis congenita [54]. iPS cell
S) cells: A new source for cell-based therapeutics? J. Control. Release
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Fig. 1.Q14 Current and envisioned applications of iPS cells. The short- and long-termpotential applications of disease- andpatient-specific iPS cell derivatives include the establishment of reliable
disease models, drug and toxicology screening, basic biology research and their use for cell replacement interventions in regenerative medicine.
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derivatives have also beenused for the investigation of the course of ret-
inal degeneration [55]. Modeling of other disease types, such as kidney
pathologies, is also envisioned even if not yet achieved [56].

Consequently, the discovery of new effective treatments for certain
diseases may benefit by such in vitro models. Disease-specific iPS cells
can thus be useful in drug and toxicology screening. One such recent ex-
ample is the discovery of a candidate chemical compound for the treat-
ment of amyotrophic lateral sclerosis (ALS) using iPS-derived motor
neurons generated from patients that suffered from the disease [57].
Small molecules able to restore the expression of the main gene in-
volved in familial dysautonomia have also been identified following
the derivation of patient-specific iPS cells [58].

iPS cells also gradually become an invaluable tool in fundamental bi-
ological research. In particular, the information and knowledge derived
from their differentiation into cells of different lineages is of great inter-
est for developmental biology studies. For example, many questions
remain unanswered regarding the course of cortical development in
themammalian brain due to the lack of appropriatemodels that recapit-
ulate the early events of this process. A recent study has reported that iPS
cells can be differentiated to all the types of pyramidal neurons that pop-
ulate this area of the brain, therefore enabling the study of cortex devel-
opment [59]. In addition, the thorough characterization of the epigenetic
changes that occur in the generation of iPS cells may also help inform
about other biological processes mainly driven by epigenetic mecha-
nisms, such as carcinogenesis [60].

Other than their applications in diseasemodeling, drug screening and
basic biological research, iPS cells are regarded as perhaps the most
promising source of personalized cells for regenerative therapies. The ul-
timate aim is that iPS cells could be generated from the patient that re-
quires treatment (autologous iPS), differentiated ex vivo into the cells
affected in the disease with or without the assistance of gene therapy
to correct genetic defects, and finally transplanted back into that partic-
ular patient [61]. This application of iPS cells is considered to be of a long-
term perspective due to many obstacles that have to be overcome for
successful and safe cell transplantation therapy. However, the enormous
benefits potentially offered to cell replacement strategies havemobilized
great interest and investment to support research for the clinical
Please cite this article as: I. de Lázaro, et al., Induced pluripotent stem (iP
(2014), http://dx.doi.org/10.1016/j.jconrel.2014.04.011
E
Ddevelopment of this technology. Thefield ismoving rapidly towards clin-

ical investigations and the first clinical study involving the transplanta-
tion of iPS cell derivatives has recently started to recruit patients [62].

4. iPS cells as cell therapeutics

The opportunities offered by iPS cell technology could overcome
most of the obstacles that surround the clinical utilization of other
types of stem cells in regenerative medicine [63].

4.1. iPS versus ES cells as sources for cell therapeutics

Since their first derivation from a mouse in 1981 [64] and human
blastocysts in 1998 [65] ES cells have been regarded as one of the
most promising sources of cells for replacement therapies. This is main-
ly due to the feasibility to keep them in culture with their self-renewal
capacity intact and their versatile differentiation potential. ES cells are
pluripotent and can potentially differentiate into cells of any develop-
mental lineage (ie endoderm, mesoderm and ectoderm).

While iPS cells possess a similar pluripotent character and can be
maintained in this state in culture, they offer certain advantages over
ES cells. First, the isolation of ES cells involves the destruction of the
blastocysts, which has generated multiple discussions regarding the
ethics of human ES cell derivation. Different regulations for human ES
cell usage and research have been set across different countries. In the
European Union, the Court of Justice established in 2011 that any pro-
cess involving the destruction of human blastocysts cannot be patented,
which has caused concern in the scientific community and fear for a
possible loss of investor motivation for research using human ES cells
[7]. The fact that iPS cells can be generated from awide variety of differ-
ent somatic cell types, eliminates the need to manipulate and destroy
embryonic materials and therefore circumvents the ethical and legal
concerns that surround ES cell isolation.

Immune rejection of heterologous cells (obtained from an individual
other than the one receiving the transplant) generally complicates the
clinical translation of cell-based therapies. This has been regarded as a
limitation of the use of ES cell derivatives in cell therapies and hence
S) cells: A new source for cell-based therapeutics? J. Control. Release
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has been the subject of numerous studies [6,66,67]. The goal of iPS cell
technology is to generate autologous, functional and committed cells
from patients, turning regenerative medicine into a personalized treat-
ment approach by minimizing the risk of graft rejection [68].

An initial report by Zhao et al. alarmingly reported the occurrence of
immune responses in mice transplanted with syngeneic (genetically
identical) undifferentiated iPS cells [69]. This study made use of the in-
herent ability of undifferentiated cells, such as iPS cells, to form terato-
mas (tumors of undifferentiated origin) when implanted in vivo [70].
Immune responses against iPS cell-derived teratomas were reported
along with aberrant expression of the Hormad and Zg16 genes [69].
In contrast, two recent studies by Guha et al. and Araki et al. have not
validated these findings [71,72]. These two genes are commonly
overexpressed in tumor cells, so their aberrant expression might be
more related to teratoma formation than to the immunogenicity of iPS
cells themselves. The contradiction between those studies could be fur-
ther attributed to the differences among iPS cell lines generated by dif-
ferent protocols [73]. Despite such observations, the suitability of iPS
cell derivatives for regenerative medicine has been supported by the
success of various preclinical models in which iPS cells have been
transplantedwith no signs of rejection [74–76]. However,more system-
atic studies on the immunogenicity of primate and human iPS cell deriv-
atives are required to assure the safety of this approach.

The fact that the generation of iPS cells avoids the use of embryonic
material and can be achieved from patient-specific cells is hugely ad-
vantageous compared to ES cells. These differences are illustrated in
Fig. 2. Whether the epigenetic state, genomic stability, mutational load
and developmental potential of iPS cells are exactly equivalent to
those of ES cells remains to be determined and should be thoroughly in-
vestigated [77,78].

4.2. iPS cells as sources for cell therapeutics: Pre-clinical studies

The first transplantation of iPS-derived cells for therapeutic purposes
was carried out in a murine model of sickle cell anemia only one year
U
N
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Fig. 2. ES vs iPS cells in regenerative medicine applications. The main advantages that iPS cells (ri
harvesting of starting cells for their generation, avoiding the handling of embryonic material a
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after iPS cellswerefirst described [79]. Since then, several other examples
have highlighted the potential of iPS cell technology in regenerativemed-
icine at the preclinical level. Table 2 summarizes the most important of
these reports. Many of these studies describe successful engraftment of
the transplanted cells and adegree of recovery of the diseasedphenotype.
For example, dopaminergic neurons re-differentiated from Parkinson
patient-derived iPS cells successfully survived in the adult rodent brain
and ameliorated motor asymmetry in Parkinsonian rats [80]. In a model
of spinal cord injury, Nori et al. confirmed not only the engraftment of
the cells but also their differentiation intomature neurons and axonal re-
growth that led to functional recovery [81]. In another approach,
reprogramming was accompanied with correction of the dystrophin
gene in the iPS cells ex vivo to treat muscular dystrophy. The muscles of
dystrophic animals engrafted with iPS-derived genetically corrected
myogenic progenitors exhibited an improvement in their contractile ca-
pability [82,83].

Despite the positive results in these studies, others have encoun-
tered several challenges such as poor engraftment rates [84] or terato-
ma formation [85]. The latest has been attributed to undifferentiated
cells among the transplanted cell population. This was especially nota-
ble in a mouse stroke model injected with undifferentiated iPS cells
that were not able to offer any behavioral improvements, while tumor
formation led to high death rates. Such observations highlight the im-
portance of the differentiation stage in which the cells are injected as
a determinant factor of successful outcome [86]. In another stroke
model study undertaken by Jensen et al., the transplanted iPS derived
cells were able to engraft in the host tissues at acceptable levels and dif-
ferentiate into the appropriate cell type (i.e. neurons primarily) howev-
er with no functional improvement [87].

The field of cell transplantation is lacking clinically relevant technol-
ogies that can offer control of cell tracking and allow follow up (in terms
of survival, location and functionality) of the transplanted cells. The
studies available to date do not monitor the cells for longer than
4 months after transplantation that may not be enough to determine
clinical outcome [88]. Overall, preclinical studies today highlight the
ght) offer as compared to ESCs (left) for cell replacement therapies are (1) the convenient
nd (2) the fact that they can be generated from the same patient receiving the transplant.

S) cells: A new source for cell-based therapeutics? J. Control. Release
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t2:1 Table 2
t2:2 Preclinical studies using iPS-derived cells in cell-based therapeutic approaches.

Disease model iPS cell derivatives Restorative effect Ref.t2:3

Sickle cell anemia Hematopoietic precursors
(genetic defect corrected by gene therapy)

Normal erythrocyte phenotype restored [79]t2:4

Parkinson's disease Midbrain dopaminergic neurons Recovery of Parkinsonian symptoms in behavioral tests [74,80,85,89]t2:5

Muscular dystrophy Myogenic progenitors
(genetic defect corrected by gene therapy)

Improvement of muscle function [83]t2:6

Spinal cord injury Neurospheres Enhanced recovery of motor function [81]t2:7

Ischemic stroke Neuroepithelial-like stem cells Improved functional recovery of stroke-damaged brain [88]t2:8

Neural progenitor cells Improvement of somatosensory and motor symptoms [90]t2:9

Neural progenitor cells Graft survival and differentiation to neuronal phenotypes but no restorative effect [87]t2:10

Intracerebral hemorrhage Neuro-epithelial-like stem cells Significant recuperation of neural function [91]t2:11

Limb ischemia Fetal liver kinase-1 positive cells Revascularization of the ischemic limb accelerated via increased expression of VEGF [92]t2:12

Endothelial progenitors Neovascularization [76]t2:13

Mesenchymal stem cells Attenuation of severe ischemia [93]t2:14

Myocardial infarction iPS cells Regeneration of infarcted tissue and improvement of contractile performance [94]t2:15

Endothelial progenitors Neovascularization, reduction of fibrosis and infarction site [76]t2:16

Cirrhotic liver Hepatic progenitors Liver regeneration [84]t2:17

Retinitis pigmentosa Retinal pigmented epithelial cells Improved visual function [75]t2:18

Age-relatedmacular degeneration
and retinitis pigmentosa

Developing rod photoreceptors Neural activity similar to native photoreceptors [95]t2:19
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need to develop technologies for integration-free reprogramming pro-
tocols that lead to safe and efficient generation of iPS cells frompatients,
successful differentiation protocols and adequate cell tracking tech-
niques as the key needs to enable future development of successful
iPS cell-based therapies.

4.3. iPS cells as sources for cell therapeutics: Clinical studies

Considering the brief history of transcription factor induced cell
reprogramming, thefield is rapidlymaking itsway towards clinical appli-
cations. An important factor behind this progress is the significant invest-
ment devoted to this technology. The Japanese government approved
recently ¥21.4 billion in an ambitious program designed to bring these
types of stem cells closer to the clinic [96]. Among the 8 programs that
will be carried out in different research centers across the country, four
of them involve the use of cells derived from iPS cells for tissue regener-
ative purposes [97].

The first human clinical study using iPS cell derivatives started
recruiting patients in August 2013 and is expected to begin with cell
transplantation procedures within 2014. Dr. Masayo Takahashi at the
RIKEN Center for Developmental Biology in Kobe has been working on
the generation of sheets of retinal pigment epithelium from patient-
specific iPS cells to be implanted in the retina of patients suffering from
age-related macular degeneration. This disease is the first cause of
blindness in developed countries and affects approximately 1% of the
population aged over 50. Dr Takahashi and her group have established
a reproducible methodology to generate sheets of retinal pigment
epithelium from human iPS cells [98]. In addition, the same group has
confirmed that iPS derived retinal epithelium is functional upon trans-
plantation in mice retina affected by the disease [95]. According to the
clinical study design, the iPS-derived retinal cells will be implanted in
the diseased retina of at least half a dozen patients. The expectation is
that the transplanted cells derived from iPS cells will grow and repair
the affected retinal epithelium, however the primary goal of this Phase
I studywill be to assess the safety of such intervention [99]. It is interest-
ing to note that authorization by the Japanese Government has been
granted for Takahashi's investigations on the basis of a clinical study,
and not of a formal clinical trial. Therefore approval of iPS cell derivatives
as a biological drug entity will not be conceded even if therapeutically
positive results are obtained. However, assuming that the outcomes
are positive, this could encourage the application for clinical trials and
fuel the way of this technology towards the bedside [62].

Another group based in Kyoto University also intends to apply in the
near future for the authorization of a clinical trial in which iPS cell-
Please cite this article as: I. de Lázaro, et al., Induced pluripotent stem (iP
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Rderived dopaminergic neurons would be used for the treatment of
Parkinson's disease. This approach is supported by the encouraging re-
sults that have already been reported from studies in non-human pri-
mates [100], however previously failed clinical attempts using ES and
fetal cells are illustrating how challenging such a therapeutic interven-
tion can be.Elsewhere, the US-based biotechnology company Advanced
Cell Technology has announced preparations to seek authorization of a
clinical trial that would use iPS cell-derived platelets for the treatment
of blood clotting disorders. In theory, such approaches can be less chal-
lenging compared to the clinical trials planned in Japan due to the fact
that platelets lack a nucleus and hence would raise less safety concerns
[99]. Overall, the rapid progress in clinical translation of iPS technology
has been received with mixed reactions among experts. Some express
excitement of the opportunities, while others believe that it might still
be too early for iPS cell technology to have a role in the clinic and serious
concerns have been expressed about the immaturity of the field and
these trials [101].
4.4. Barriers to clinical translation of iPS cell technology

Despite the rapid and promising developments described above,
several fundamental questions remain before iPS cells can be clinically
used. One of the roadblocks that impacts on the safety of iPS cells is
around the process of reprogramming itself. The fact that some of the
reprogramming factors needed to achieve maximum efficiency (such
as c-Myc) are known proto-oncogenes will need to be overcome [15].
Although the production of iPS cells without the expression of this
proto-oncogene has been reported, a decrease in the efficiency of
reprogramming has been concomitantly observed [17].

The vector technology used to overexpress the reprogramming fac-
tors in somatic cells is also critical. The most popular and efficient
vectors to express the reprogramming factors today are retroviruses
that contain the inherent risk of genomic aberrations in the transfected
cells caused by insertional mutagenesis and can lead to tumorigenesis
[102]. The gene therapy field has accumulated experience on the issues
around insertional mutagenesis both at the preclinical and clinical level.
Convergence of the two fields will significantly improve methodologies
for iPS cell generation with the latest and safest vector technologies. Ef-
forts towards use of safe, yet efficacious, cell reprogramming include the
use of non-integrating vectors and even the use of DNA-free technolo-
gies tominimize or completely prevent the risk of insertional mutagen-
esis [103]. Episomal vectors currently offer the most optimum safety to
efficiency ratio [34,35].
S) cells: A new source for cell-based therapeutics? J. Control. Release
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Another significant barrier is that of the complex culturing protocols
used to generate,maintain anddifferentiate iPS cell colonies and the im-
pact that these have on the cells. Epigenetic aberrations might appear if
the process of cellular reprogramming is imperfect [104–106], while
karyotypic abnormalitiesmay be triggered as a result of long cell culture
protocols [77]. Efforts have been made to improve the reprogramming
methodologies and reduce the timeframe required to reach the plurip-
otent state. These could lower the number of stochastic steps that the
cell needs to pass in order to achieve a pluripotent state, which would
allow the generation of good-quality iPS colonies with lower aberra-
tions [78,107].

Should iPS cell technology finally reach the realm of clinical regener-
ative medicine, the use of xeno-free media for their generation, mainte-
nance and differentiation in culture will be imperative. While the
generation of iPS cells in such xeno-free culture media has already
been achieved by different laboratories, moving the field forward to
meet Good Manufacturing Practice (GMP) and clinical-grade require-
ments [108–110], iPS differentiation protocols into different cell types
still require the use of a wide variety of growth factors and culture con-
ditions. The safety of the exposure to thesemolecular cueswill also have
to be thoroughly investigated prior to any clinical application [78,111].

Skepticism still prevails as to whether iPS cells can be considered
identical or at least equivalent to ESCswith regards to their pluripotency
and differentiation potential. Genome-wide analyses have found slight
differences in gene expression profiles suggesting that epigenetic signa-
tures from the tissue of origin remain in iPS cells after reprogramming
[77]. The “epigenetic memory” of iPS cells can be an issue of concern
as iPS cells from a particular origin may be prone or restricted to differ-
entiate into cell types from the same lineage, thus complicating differ-
entiation protocols to generate different cell types [112]. Indeed,
epigenetic events in the early phases of the reprogramming process
seem to be crucial in order to achieve full reprogramming to ground-
state pluripotency, however these mechanisms have not yet been fully
elucidated [113].

Given that undifferentiated stem cells are known to cause teratomas
in vivo, it is imperative to guarantee that all iPS cells are successfully dif-
ferentiated to the desired cell type before transplantation. Thiswill need
to be taken into consideration if production of GMP grade iPS cells for
cell-based therapies is sought [114]. Inadequate engraftment of the iPS
cell derivatives could also challenge their clinical application. In addi-
tion, if the cell identity is not stable after reprogramming and differenti-
ation, the success of the therapy could also be limited [84].

Furthermore, generating clinical-grade iPS cells tailor-made to
match every particular patient would be realistically very challenging,
both in terms of economic resources and logistical (e.g. timing) require-
ments. With the technologies currently available, approximately
3 months are necessary to generate iPS cells from the somatic cells of
a patient and subsequently differentiate the pluripotent population
into the cell type needed [60]. Taking into account the necessary tests
to assure the safety and quality of the cells, up to sixmonths could be re-
quired. This timeframe constitutes a hurdle for the clinical relevance of
iPS cells, especially in the treatment of lesions such as spinal cord inju-
ries, in which the promptness of the intervention is very closely linked
to the success of the therapy. Economic reasons could also be an issue
if the demand of tailor-made iPS cells becomes widespread, since tens
of thousands of dollars would be needed to derive each cell line.

In order to circumvent these obstacles, the establishment of banks of
allogeneic iPS cell lines for their use not only in basic research but also in
regenerative medicine has been proposed. Although at first glance this
would act as a detriment of the notion of personalized iPS cell therapy,
it has been calculated that a stock of 75 iPS cell lines derived fromhomo-
zygous human leukocyte antigen (HLA) donors would be enough to
match 80% of the population in Japan without triggering any immune
response [34,115]. In a proposal that has been named the “iPS cell
Stock Project”, Shinya Yamanaka was authorized in September 2012 by
the Japanese Health Ministry to generate iPS cells from samples stored
Please cite this article as: I. de Lázaro, et al., Induced pluripotent stem (iP
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in several cord blood banks established around the country [101]. Stud-
ies to follow a similar strategy have also highlighted that a pool of 150
cell lines from defined HLA donors would conveniently match 93% of
the UK population [116].

4.5. Future Perspective: In vivo cell reprogramming to pluripotency for
therapeutic applications

Induced transcriptional cell reprogramming to pluripotency and de-
differentiation of liver tissue in vivo has been recently described. This
was achieved by transiently forcing the overexpression of the original
four reprogramming factors first described by Yamanaka and colleagues
used for the generation of iPS cells by tail vein hydrodynamic injection
of plasmid DNA [117,118]. This spatially (liver) and temporally (tran-
sient expression very soon after injection) targeted approach does not
lead to the generation of teratomas. Subsequent studies further con-
firmed in vivo reprogramming to pluripotency by expression of the
reprogramming factors that was “switched on” for long periods of
time and in all tissues produced extensive teratomas [119,120]. Al-
though the concept of in vivo reprogramming to pluripotency is still at
its infancy, it could be of major interest in regenerative medicine appli-
cations and potentially help overcome some of the hurdles faced in the
utilization of in vitro generated iPS cells. Provided that the in vivo tissue
microenvironment will be able to drive the re-differentiation of the
reprogrammed cells to normal functional phenotypes, the need for ex-
traction of donor cells, iPS cell generation, culture, differentiation and
transplantation could be by-passed. In that way the fields of gene ther-
apy and the vector technologies developed in the last 20 years for a
multitude of diseases and tissues could potentially merge with the
field of cell reprogramming to achieve in situ tissue regeneration.

5. Conclusions

Great expectations are abundant for a variety of applications
envisioned following the discovery of iPS cells. These include better
and more pathologically-relevant models for pharmacological and tox-
icological screening, along with disease modeling and basic biological
research in the short term. In the longer term cell replacement therapies
and tissue regenerative medicines are also expected. iPS cells can offer
advantages over ES cells, especially in terms of immune tolerance and
design of personalized interventions. In addition, theminimally invasive
nature of the procedure to generate such cells from human patients cir-
cumvents the difficulties of biopsies and the ethical controversies that
surround the destruction of blastocysts to derive ES cells and have
prompted different regulations around their use. The iPS technology is
not exempt from challenges to be overcome and a lot more knowledge
is needed before iPS cells can find their way in the clinic. However,
promising results have already been obtained in pre-clinical studies in-
volving different diseasemodels. The immense interest and noteworthy
investment in iPS cell technologies are fueling a rapidmove towards the
clinic only 8 years after its birth.
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