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Abstract

We explore the influence of condensed phase in various single-collision and slowing-down distributions of low-

energy (sub-keV) electron tracks in water (i.e. vapor versus liquid phase at the same density). A unified methodology

for both phases has been developed and implemented in our Monte-Carlo code based on elements of the Born and

Bethe theories which are used to establish cross-sections for inelastic electronic scattering, the main mechanism of

energy loss in the present study. The linear dielectric response theory was used for the valence shells of the liquid phase

implemented by Born-corrections at low energies. By using experimental optical data as input, various many-body

effects, such as, polarisation, collective excitations and correlation, are, for the most part, automatically accounted

for. Monte-Carlo calculations of the spatial pattern of energy distribution, as well as, the clustering properties of col-

lision events in full slowing-down electron tracks have been performed for both the vapor and liquid phases of water.

The degree in which various model assumptions pertaining to the condensed-phase influence the above distributions is

examined.
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1. Introduction

Electrons with kinetic energies in the sub-

keV range, named here low-energy electrons

(LEEs), play an important role in the mechanism
ed.
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of radiation action in matter by almost any suffi-

ciently energetic particle beam [1]. The reason

being that LEEs are abundantly produced during

the slowing-down process and the dissipation of

their energy is confined within sub-micron vol-
umes. This spatial scale is often associated with

important functional units in both biological sys-

tems and electronic devices. For example, cancer

induction and cell-kill by radiation is supposed to

be triggered by molecular events in the cell

nucleus (few lm) associated with clustered dam-

age in the DNA double-helix (few nm) and/or

chromatin-size targets (10–100nm) [2]. On the
other hand, single-event-upsets (SEUs) in micro-

electronic-cells are also associated with ionisation

events in a submicron node of the device [3]. Due

to the close proximity (nm-separation) of succes-

sive ionisation events in LEE tracks, their charac-

teristic spatial pattern of interactions and energy

deposition is by far more efficient compared to

higher energy electrons in inducing clustered
damage [4].

The study of LEEs, however, poses serious

challenges due to the gradual failure of classical

(binary) interaction models in the sub-keV range.

The details of the electronic structure now become

critical, giving rise to many-body effects in the

scattering process. With respect to biological mat-

ter and the modelling of cellular radiation action,
water has been traditionally the material of choice,

being a realistic approximation of the cellular med-

ium. The degree in which, however, condensed-

phase effects (i.e. vapor versus liquid phase at

the same density) are important to modeling

LEE tracks in water has been debated since the

mid-70s; for a review see [5]. At the core of this

debate lies the availability of well-established
experimental cross-section data for the vapor

phase, in sharp contrast to the limited information

on the scattering properties of the liquid phase.

Thus, vapor-based Monte-Carlo (MC) codes are

generally considered more reliable than liquid-

based MC codes, although the latter are supposed

to be a more realistic approximation of the liquid-

like cellular environment. However, the use of
vapor data extrapolated linearly to unit density

(i.e. the so-called gas-phase approximation of li-

quid water) neglects any non-linear density effects
in the scattering process. The latter are known to

be gradually more pronounced at low energies

and, therefore, might be particularly important in

modeling LEE tracks [6–8].

In the present study, we explore the influence
of condensed phase (i.e. vapor versus liquid phase

at the same density) in various single-collision

and slowing-down distributions of sub-keV elec-

tron tracks in water. A unified methodology for

both phases has been developed based on ele-

ments of the Born and Bethe theories which are

used to establish inelastic cross-sections for

energy loss. The linear dielectric response theory
was used for the valence shells of the liquid phase

together with Born-corrections at low energies.

The methodology has been implemented in our

Monte-Carlo code, MC4 [9], which performs full

slowing-down simulation of electrons in an event-

by-event mode and used for various track-struc-

ture calculations. Thereafter, the vapor-based

version of the code will be denoted as MC4V,
whereas, the liquid-based version as MC4L.

All vapor results have been normalised to unit

density.
2. Inelastic models

The first Born approximation (FBA) provides a
suitable starting point for the description of the

inelastic scattering process. The important result

of this approximation is the factorisation of the

doubly-differential inelastic cross-section into a

kinematic (projectile-dependent) and a dynamic

(target-dependent) factor as follows [10]:

d2Rð1Þ

dEdQ
¼ 8pa20R

2NZ
T

� Sðq;EÞ
Q2

; ð1Þ

where E is the energy-transfer, Q = q2/2m with q

the momentum-transfer and m the electron rest

mass, T is kinetic energy of the incident electron,

a0 is the Bohr radius, R is the Rydberg constant,
N is the molecular density, Z is the atomic number

and S(q,E) is the inelastic form-factor. According

to common practice for condensed targets we use

the macroscopic cross-section, R, also called the

inverse mean-free-path, IMFP.
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Eq. (1) may be directly used for modelling the

energy loss and angular deflection (i.e. momentum

transfer) in an inelastic collision. In view, however,

of the prominence of momentum transfer in elastic

scattering, it is advantageous for an MC simula-
tion to model the E-dependence directly from

Bethe�s asymptotic expansion. In accordance with

the restrictions of the FBA, we keep only the first-

order term and write the singly-differential cross-

section as follows:

dRð1Þ

dE
¼ ½AðEÞ lnðT =RÞ þ BðEÞ�T�1; ð2Þ

where T = 1/2mu2 (m: electron mass) and

A(E),B(E) are target properties directly related to

the form-factor. In particular, the A(E) depends

on the optical-limit, S(q = 0,E), whereas the B(E)

relates to the full q-dependence of S(q,E). The dif-

ference between our vapor and liquid inelastic

models lie solely in these two target-parameters,
which have to be determined separately for the

two phases of water. Since any phase effects would

be limited to the valence shells, the core-shell of

water (i.e. the oxygen K-shell) is treated within

the binary-encounter-approximation with ex-

change included [11].

2.1. Liquid phase

For the liquid phase, we take advantage of the

following relationship between the form-factor

and the loss-function:

Sðq;EÞ ¼ 2

p
Q

E2
p

Z Im � 1

eðq;EÞ

� �
; ð3Þ

where e(q,E) = e1 + ie2 is the complex dielectric-re-

sponse function, Ep is the plasma energy of liquid

water (21.6eV), and Im(�1/e) is the loss-function.

It may then be shown that

AðEÞ ¼ 1

2pa0
Im

�1

eðq ¼ 0;EÞ

� �
: ð4Þ

Importantly the optical-loss-function in Eq. (4)

may be determined from optical data by using

the following relationship:

Im
�1

eð0;EÞ

� �
¼ 2nk

ðn2 � k2Þ2 þ ð2nkÞ2
; ð5Þ
where n = n(E) and k = k(E) are the real and imag-

inary parts of the index of refraction, respectively,

which have been experimentally measured for li-

quid water. A modified Drude expansion model

has been used to analytically represent the optical
data consistent with the appropriate sum-rules.

The following formula pertains to this model:

eð0;EÞ ¼ 1þ E2
p

X
j

fj
E2
j � E2 � icjE

; ð6Þ

where the Ej, fj and cj are the adjustable model

parameters found from the analytic representation

of the optical data. The details of this procedure
may be found in [12].

On the other hand, the B(E) parameter formally

relates to the q-dependence of the form-factor. We

have examined various dispersion (q > 0) models

for calculating proton [13] and electron [14] inelas-

tic characteristics in liquid water. Here, we use

the extended-Drude model as first suggested by

Ritchie et al. [15]. The loss-function may then be
calculated from

Im
�1

eðq;EÞ

� �
¼ e2ðq;EÞ

e21ðq;EÞ þ e22ðq;EÞ
; ð7Þ

where the e1 = Re[e(q,E)] and e2 = Im[e(q,E)] are

now found from Eq. (6) under the substitution

Ej(q) = Ej + q2/2m, in accordance with the impulse
approximation (restricted to the continuum), and

fj = fj(q), in accordance with an empirical general-

ised-oscillator-strength formula. We may then

determine the B(E) by numerically integrating

Eq. (1) and solving Eq. (2). For the continuum,

we also account for the binary limit at large E by

means of the binary-encounter-approximation.

The details of this procedure are discussed in [16].
Perturbation corrections were included by

means of a second-order term:

dRð2Þ

dE
¼ � 2

pa0T
Im

�1

eð0;EÞ

� �
LðEÞ: ð8Þ

Eq. (8) was based on a classical impact-para-

meter perturbation calculation where the L(E)

function depends on the cut-off distance that dis-

tinguishes between close and distant collisions in
the calculation [17]. This function, however, be-

comes negative below about 100eV. Therefore, a
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simple Coulomb-field correction [18] was adopted

at lower energies which results in the substitution

of T by T + Ij + Uj, where Ij and Uj are the binding

and kinetic energy, respectively, of an electron at

the jth orbital. An exchange correction term was
applied to the continuum by analogy to the Mott

formula:

dRðexÞ
j ðW ; T Þ
dW

¼ dfRjðT � W � I j; T Þ
dW

� deRjðW ; T Þ
dW

� deRjðT � W � I j; T Þ
dW

" #1=2

;

ð9Þ

where W is the kinetic energy of the secondary

electron (W = E � Ij), and

deRj

dW
¼

dRð1Þ
j

dW
þ
dRð2Þ

j

dW
: ð10Þ
2.2. Vapor phase

For the vapor phase, we use the relationship be-

tween the form-factor and the oscillator-strength

of the molecule:

Sðq;EÞ ¼ Q
E

df ðq;EÞ
dE

; ð11Þ

where df(q,E)/dE is the generalised-oscillator-

strength (GOS). The A(E) may then be found from

AðEÞ ¼ 4pa20R
2N

df ðq ¼ 0;EÞ
EdE

; ð12Þ

where df(0,E)/dE is the optical-oscillator-strength

(OOS) which may be obtained from

df ð0;EÞ
dE

¼ 4p2aa20R
� ��1

rph; ð13Þ

where a is the fine structure constant and rph the
photo-absorption cross-section. The analytic

determination of the OOS for the water molecule

based on experimental rph data has been given in

[19].

TheB(E) for the vapor is found directly fromEq.

(2) by using the experimental inelastic cross-section

data at the limited incident energies available.

However, since, formally, theB(E) is independent of
T, it may then be used at any incident energy. Sim-

ilar to the liquid case, the binary-encounter-
approximation (with an exchange correction) was

used as an asymptotic limit of Eq. (2) for the contin-

uum. Any further low-energy Born corrections are

automatically incorporated in the empirical deriva-

tion of B(E), since the available cross-section data
for the vapor go down to a few tens of eV. The pro-

cedure is discussed in more detail in [19].
3. Angular deflections

Data on the angular distribution of electrons in

liquid water following an elastic or inelastic colli-
sion do not exist. As a result, and in view of the

difficulties associated with the theoretical treat-

ment of this problem, a methodology applied

earlier to the vapor phase has been adopted here

for both phases. In view of other uncertainties,

this is a reasonable approximation. In summary,

the screened-Rutherford formula with Moliere�s
screening parameter has been used for the total
elastic, as well as, for the differential above

200eV. At lower energies empirical distributions

were used [20]. The angular distributions of the

scattered and secondary electrons after ionisation

were obtained based on the kinematics of binary

collisions and the data of Opal and co-workers

as described in [21].
4. Results

In Figs. 1(a) and (b) we present secondary elec-

tron spectra for electron ionisation collisions in

vapor and liquid water for two characteristic

incident energies, namely, for 1 and 0.1keV. The

liquid results have been calculated by the FBA (a
first-order perturbation theory), the FBA supple-

mented by a second-order term plus an exchange

correction, as well as, by the simple Mott formula

modified by the binding energies of liquid water. It

may first be seen that corrections to the FBA are

unimportant at 1keV (the two plots are indistin-

guishable in Fig. 1(a)), becoming of the order of

50% at the peak (W � 10eV) of the 0.1keV distri-
bution (Fig. 1(b)). It is also evident that the vapor

spectra are notably different from the liquid

spectra. At both energies the liquid spectra are



Fig. 1. Secondary electron spectra for electron impact in the two phases of water calculated by various inelastic models: (a) 1 keV

electron impact; (b) 0.1keV electron impact.

Fig. 2. Electron inelastic inverse-mean-free-path (IMFP) for

the two phases of water calculated by various inelastic models.
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harder; the most probable secondary energy is

about 10eV for the liquid whereas it is only 2–

3eV for the vapor. This is due to an up-ward shift

of the oscillator-strength in the condensed phase
resulting from inter-molecular bonding [6]. The

Mott calculations fail to reproduce the proper

shape of the secondary spectra, especially at the

low-energy range where the binary approximation

fails. As expected, all distributions come together

at high secondary energies where the details of

electronic structure become gradually less

important.
In Fig. 2 we present the inelastic IMFP from

10keV down to threshold. Regarding phase-effects

the following conclusions follow: (i) Differences

between the two phases become noticeable below

1keV, since the binary character prevails at higher

impact energies; (ii) The vapor IMFP is by a factor

of 1.4 higher than the liquid at 100eV, due to

screening effects in the condensed phase; (iii) The
vapor IMFP peaks at lower impact energies

(�70eV) compared to the liquid (�120eV), due

to the upward shift of the oscillator-strength in

the condensed phase; (iv) The correction terms to

the FBA appear to be important below 1keV,

especially since the magnitude of the correction is

of the same order as the vapor–liquid difference.

Nevertheless, the screening and upward shift in
the liquid is still evident in the FBA results. As ex-

pected, the Mott-calculated IMFP is way off

throughout most of the depicted energy range, a
direct consequence of the failure of the binary

approximation in the low-energy range.

In Fig. 3 the dependence of the mean energy

loss, hElossi per collision on incident electron en-

ergy is shown. In relation to previous discussion,

it may be clearly seen in this figure that the harder

collision spectrum in the liquid phase results in a
larger mean value than in the vapor by about

5eV. A binary approximation, on the other hand,

results in even larger differences as the Mott results

indicate.

In the following figures we present and compare

MC calculations from full slowing-down electron



Fig. 3. Average energy loss as a function of incident energy for

electron inelastic impact in the two phases of water calculated

by various inelastic models.
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tracks (followed down to 1Ry) from the MC4V

and MC4L versions.

Figs. 4(a) and (b) present distributions of ab-

sorbed energy (per track) in spherical shells at

1nm radial intervals from the point of origin of

monoenergetic electron sources of 0.1, and 1keV

initial energies. To obtain reasonable statistics,

the results are averaged over 1000 and 10000 elec-
tron tracks, respectively. Although the liquid dis-

tributions do appear to have a slightly smaller

spread-out pattern (rise higher and peak earlier)
Fig. 4. Monte-Carlo calculated radial distribution of absorbed fracti

track origin in the two phases of water. The initial electron energy w
than the vapor ones at the 1keV energies, the effect

is much smaller than previously considered [22]. In

particular, these results reveal that the screening

effect, which is responsible for larger MFPs in

the liquid, is almost equally compensated by the
effect of the hardening of the liquid spectrum (la-

ger hElossi), which acts in the opposite direction

resulting in the dissipation of energy closer to the

origin. Interestingly, this pattern is reversed at very

low energies (the 100eV case) where the screening

effect seems to be more important than the harden-

ing effect, i.e. it is the MFP and not the hElossi
which governs the distribution. This is reasonable,
in view of the much smaller number of collisions

during slowing-down at this incident energy. The

above arguments are further supported by the

behaviour of the FBA-based distributions. Here,

the effect of screening is minimal (the MFP is very

close to the vapor), whereas the hardening is still in

effect. As a result, the 100eV distribution is very

close to the vapor, whereas the higher energy dis-
tributions show a smaller spread-out pattern.

The Mott-based distributions may be explained

by the same arguments.

Although the pattern of energy deposition as

presented, for example, in Fig. 4, provides impor-

tant information on track-structure characteristics,

biological damage is largely the result of clustering

of events in critical cellular structures. One of the
most basic clustering characteristic is the probabil-

ity distribution of distances between two inelastic
on in spherical shells of 1nm intervals centred at the electron-

as: (a) 0.1keV (the two lines are to guide the eye), (b) 1keV.



Fig. 5. Monte-Carlo calculated frequency distribution of distances between inelastic collisions in full slowing-down electron tracks in

the two phases of water. The initial electron energy was: (a) 0.1keV (the two lines are to guide the eye), (b) 1keV.
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collisions. Such distribution provides also impor-

tant information for the subsequent chemistry. In

Figs. 5(a) and (b) we present such distributions
at three different initial electron energies calculated

on the basis of the same inelastic models as in Fig.

4. At all energies, the distribution peaks at about

1–3nm distances which is of particular significance

considering that 2nm is the diameter of the DNA

double helix. As the electron increases, the tail of

the distribution increases due to the larger MFPs

involved. The vapor distributions peak at the same
distances with the liquid (the corrected–FBA re-

sults) but higher due to the larger IMFP in the

vapor phase (see Fig. 2) which results in smaller

distances between successive collisions. The reason

that the FBA distributions of the liquid peak even

higher than the vapor, although the respective

IMFPs are somewhat lower (see Fig. 2), is due to

the more efficient dissipation of energy in the li-
quid, which, in turn, is the result of the higher

hElossi.
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