Articles | 2016

ACS Nano, 2016, 10(4): 4459-4471

Graphene oxide nanosheets reshape synaptic function in cultured brain networks

Rossana Rauti, Neus Lozano, Verónica León, Denis Scaini, Mattia Musto, Ilaria Rago, Francesco Paolo Ulloa Severino, Alessandra Fabbro, Loredana Casalis, Ester Vázquez, Kostas Kostarelos, Maurizio Prato, and Laura Ballerini*

Graphene offers promising advantages for biomedical applications. However, adoption of graphene technology in biomedicine also poses important challenges in terms of understanding cell responses, cellular uptake or the intracellular fate of soluble graphene derivatives. In the biological microenvironment graphene nanosheets might interact with exposed cellular and subcellular structures resulting in unexpected regulation of sophisticated biological signaling. More broadly, biomedical devices based on the design of these 2D planar nanostructures for interventions in the central nervous system (CNS) requires an accurate understanding of their interactions with the neuronal milieu. Here, we describe the ability of graphene oxide nanosheets to down-regulate neuronal signaling without affecting cell viability.